
Shared Interactive Video for Teleconferencing

Chunyuan Liao1, Qiong Liu2, Don Kimber2, Patrick Chiu2, Jonathan Foote2, Lynn Wilcox2

1Dept. of CS, Univ. of Maryland
2FX Palo Alto Laboratory, 3400 Hillview Ave. Bldg. 4, Palo Alto, CA 94304, U.S.A.

Phone: 1-650-813-6957
{liu, kimber, chiu, foote, wilcox}@fxpal.com

ABSTRACT
We present a system that allows remote and local
participants to control devices in a meeting environment
using mouse or pen based gestures “through” video
windows. Unlike state-of-the-art device control interfaces
that require interaction with text commands, buttons, or
other artificial symbols, our approach allows users to
interact with devices through live video of the environment.
This naturally extends our video supported pan/tilt/zoom
(PTZ) camera control system, by allowing gestures in video
windows to control not only PTZ cameras, but also other
devices visible in the video image. For example, an
authorized meeting participant can show a presentation on
a screen by dragging the file on a personal laptop and
dropping it on the video image of the presentation screen.
This paper presents the system architecture,
implementation tradeoffs, and various meeting control
scenarios.

Keywords
Collaborative device control, video enabled device control,
gesture based device control, panoramic video, video
communication, video conferencing, distance learning.

1. INTRODUCTION
Remotely participating in meetings is increasingly popular
for purposes such as distance learning and project
discussions between distant areas and countries. Through
remote participation, students can attend classes from their
dorms, scientists can participate in seminars held in other
countries, and executives can discuss critical issues without
leaving their offices. This paper focuses on interactive
video techniques to support meetings and teleconferences.
For the purposes of discussion, we will define “local” as

the physical meeting room, and “remote” as anywhere else.

Figure 1. Scenarios for using shared interactive video
in a teleconference.

In the literature, “interactive video” appears with several
different meanings. Zollman considers it to be any video
where the user has more than minimal on-off control over
what appears on the screen, including random access, still
frame, step frame, and slow play [16]. Tantaoui et al. use
the term similarly in their paper [14]. VideoClix� sees
interactive video as hotspot enhanced recorded video [15].
Darrell’s “interactive video environment” refers to a virtual
reality system where people can interact with virtual
creatures [3]. Aside from these, a relatively common usage
in the distance-learning field is two-way video/audio/data
communication shared among participants [9]. A more
formally specific definition of interactive video, from [12]
is: “A video application is interactive if the user affects the
flow of the video and that influence, in turn, affects the
user's future choices.” The meaning we adopt in this paper
is very close to the union of the last two definitions. More
specifically, we view interactive video as a live video

09:22

Hamano

Participant NameHighlight

Scribbled
Annotation

Document
drag & drop Device Control

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MM’03, November 2-8, 2003, Berkeley, California, USA.
Copyright 2003 ACM 1-58113-722-2/03/0011…$5.00.

interface that allows us to affect and control real-world
devices seen in the video.

We described a live video supported camera control system
in an earlier paper [11]. There, users are presented with a
panoramic video overview, and may select regions of that
window for closer inspection in a close-up video window.
In other words, the panorama video overview serves as the
control interface for mouse actions that steer a
Pan/Tilt/Zoom (PTZ) camera (which provides the high-
resolution close-up view).

A natural extension is to let users control other devices
using related mouse or pen based gestures performed in
video windows. For example, an authorized participant
may drag a presentation file from a desktop to a remote
presentation screen seen in the video window, causing that
presentation to be remotely displayed. To facilitate this,,
the video may be augmented with metadata indicating the
controllable devices, or annotations such as the names of
participants.

Our work differs from the device control system proposed
in [8], in that it does not require specific devices for
control, nor does it require people to be in the controlled
environment. Unlike the “graspable interface” that allows
people to manipulate virtual objects with real “bricks” [4],
our system operates real world equipment through the live
video. Moreover, in contrast to the VideoClix� or iVast�
products [15][7] that support metadata editing of recorded
video, our system works on live video and controls real-
world devices.

Live video as a reference cue for power-plant control has
been explored in [13]. Goldberg et al. use video as
reference cue to convey “Tele-Actor,” a skilled human who
collects the video and perform actions during navigation
[6]. To our knowledge, more general video-enabled device
control for meetings has not been presented in the recent
literature. By using a video interface to control devices in a
meeting environment, meeting participants may easily
overcome the limitations of their physical locations. For
example, a remote meeting participant may use a mouse to
draw figures on a local presentation screen from 2000 miles
away. As we illustrate in Figure 1, a remote participant
may also drag a copy of a given presentation from the
video image of the (local) screen to a remote desktop,
check the local time, or choose among microphones for
better sound quality. If the remote person wishes to give a
presentation, they may drag a presentation file onto the
video image of the (local) presentation screen, and adjust
the screen brightness for proper visual effect.

Our current implementation of this idea supports
“interactive video” by augmenting the live video captured
by our FlySPEC subsystem with device-control messages.

Currently, it supports useful file operations like printing
and local/remote file transfer.

The rest of the paper is organized as follows. In the next
three sections, we present the system overview, the video
acquisition system, and the video canvas and metadata. In
section 5, we present system deployment and several
application scenarios. Summary and future work are detailed
in Section 6.

2. SYSTEM OVERVIEW

Figure 2. Connecting multiple control components through
the Internet.

A basic idea in our system is the “Video Canvas,” which
associates and orients all images, annotations and metadata.
A Video Canvas can be thought of as a shared blackboard
onto which the cameras paste images and from which users
request views, control devices seen in the views, and draw
annotations to be shared with other users. Each interface
provides an overview of the canvas, and a close-up view of
some region. A meeting participant may control their
close-up view by circling a region of interest in the
overview. Furthermore, they may add annotations such as
“name-tags” and digital ink marks, or transfer files using
drag and drop operations.

Figure 2 shows the system architecture. Video from the
controlled scene is captured using a hybrid camera that
includes both a PTZ and a panoramic camera. Videos from
both cameras are sent to users as sequences of JPEG

Control Server

Video Server

Video Server

I
n
t
e
r
n
e
t

Remote
Users

Automatic
Control Unit

Panoramic
Camera

PTZ
Camera

Presentation
Computer & Display

Appliance
Control Server

Printer & Printer Server

images in real time. A camera control server running on a
networked workstation controls the PTZ camera through a
RS-232 serial link. The camera control server accepts
HTTP control requests through the Internet/Intranet, and
sends pan/tilt/zoom commands to the PTZ camera. Given
the camera constraints, the camera control server optimally
satisfies users with a combination of optically and digitally
zoomed video.

An appliance-control server manages appliances other than
the cameras. This server translates control requests into
specific device control commands. When this control
server receives requests from remote users, it sends the
appropriate commands and data to the local devices. With
the architecture of Figure 2, we can add arbitrarily many
cameras, screens, printers, and other devices in the system.

As seen on the right side of Figure 2, remote clients
connect to the system through networks. Remote users can
control the FlySPEC camera and other devices from these
remote clients. They can also immediately see the effects
of control actions through the video. We have
implemented several different client applications
specialized for different uses, described in Section 5.

3. THE VIDEO ACQUISITION SYSTEM
The video acquisition system can be described in four
parts: the camera hardware, the graphical interface for user
interaction, the camera management system, and the
network video service.

3.1 The FlySPEC Camera

Figure 3. The FlySPEC Camera
The video for our device control environment is provided
by a FlySPEC system [11]. Figure 3 shows a FlySPEC
camera. This is a hybrid camera constructed by combining
a PTZ camera and a panoramic camera called FlyCam [5].
The panoramic camera covers a wide-angle view, and
provides low-resolution video for the entire video canvas.
The PTZ camera can provide high-resolution video of

smaller areas or capture details of small objects. Requested
video views are provided by the PTZ camera, or by
electronic pan/tilt/zoom from the panoramic camera. The
close proximity of the panoramic and PTZ cameras makes
it easy to find the correspondence between the PTZ view
and a region in the panoramic view with a simple 2D affine
transformation. This correspondence is useful for
controlling the PTZ camera based on low-resolution
panoramic video. It also allows seamless switching of the
video source between the panoramic and PTZ cameras.

3.2 Graphical user interface for controlling
cameras and other devices

Figure 4. Web-based Graphical User Interface for PTZ
Camera Control and General Meeting Device Control

To facilitate both device and camera control, we designed
the graphical user interface shown in Figure 4, which is
based on the interface described in [11]. In the web
browser, the upper window shows a resolution-reduced
video from the panoramic camera, and the lower window
shows the close-up video produced by the FlySPEC
system. Using this interface, the user adjusts the close-up
video by circling an interesting region in the panoramic
view with the mouse. The region inside the circled area’s
bounding box will then be shown in the close-up view
window. So instead of confusing buttons for pan and zoom
direction, an intuitive gesture selects the desired camera
view. In addition, we define a richer set of gestures for
interacting with other varied devices, as discussed later in
Section 5.

3.3 The Camera Management Approach
Details of our most recent camera management algorithm
are described in [10]. Relative to the camera image plane
(corresponding to the video canvas) is an ‘ideal video
signal’),,(tyxf where (x,y), are canvas coordinates and t is

User
Selection

Overview
Window

Close-up
Window

time.),,(tyxf is the idealized video signal available from a
perfect unlimited resolution camera. Because ideal cameras
are not generally available,),,(tyxf is represented by a
band-limited signal estimated from the panoramic and PTZ
camera. The camera management goal is to steer the PTZ

camera so that),,(ˆ tyxf is a good approximation
to),,(tyxf in the most highly viewed regions. Let p(x,y,t|I)
be the probability that users will want to see details around
(x,y), conditioned on control inputs I (which can include
user view requests as well as features computed
automatically by the system). The main idea of the camera
management approach is to minimize the expected
distortion during a period T, given by

��� −= dxdydttyxftyxfItyxpffD
2

),,(),,(ˆ)|,,(],ˆ[(1)

by moving the PTZ camera to an optimal position. After
the PTZ camera takes the best possible image, each
meeting participant who requests an interesting view will
be served independently according to his/her selection and
the available details of the scene.

3.4 The Video Service
The NTSC video from the PTZ camera is connected to an
off-the-shelf motion JPEG server made by Axis . The
server compresses NTSC video into a sequence of JPEG
images in real time, and serves them over the Internet at a
maximum rate of 30 frames per second. Multiple client
requests slow the frame rate gracefully. To serve a large
number of video users, a high performance server can be
installed between the motion JPEG server and the Internet.
Since the prototype system does not serve a large number
of users at this early stage, connecting the motion JPEG
server directly to the Internet provides reasonable system
performance.

The panoramic camera of the FlySPEC camera is
connected to a workstation that can capture video from
fixed cameras and stitch these video inputs into a
panoramic video in real-time. A computer server running
on this workstation can also send panoramic videos or
close-up videos in JPEG sequences to remote users
according to their requests.

Server push of the motion JPEG requires higher bandwidth
than some solutions such as MPEG, but has the advantage
of simplicity, and low latency. In our system, low latency
is critical important for device-control performance. The
pushed JPEG images may be easily displayed in browsers
capable of displaying server pushed images, or using
simple Java applets.

4. VIDEO CANVAS AND METADATA
In our system, the video canvas is a core concept for
integrating various software components. It can be thought
of as a shared blackboard onto which images are pasted and

user views are extracted, and onto which annotations and
metadata may be anchored. For convenience, the canvas-
coordinate system is defined according to the panoramic
video image coordinates, and used for all metadata and
view control information.

4.1 Definition of hot spots and metadata
To operate devices (e.g. screen, speaker, or printer)
appearing in live video, we need to model these devices
with either a 3-D model or a 2-D model [13]. In the case of
static objects and fixed FlySPEC cameras, it is easy to
locate the objects the user is operating by simple “within-
region” checking in the canvas. In the case of a dynamic
environment, where objects’ images move freely on the
canvas, the interaction becomes complicated since we need
to recognize and trace these object in real-time, which is
still an open problem. In our system, we use a simple 2-D
model and assume that the FlySPEC camera is fixed and
that objects remain static or change infrequently enough
that manual updating of positions is feasible.

Figure 5. Canvas annotation tool, used to define
hotspots and metadata.

The annotation tool shown in Figure 5 can be used to create
and edit metadata such as annotations or hotspots for
supporting various interactions with visible devices. It
provides video windows showing both panoramic and
close-up views. Either window can be used for gestures to
control the camera, produce annotations, or define metadata
such as hotspots associated with various controllable
appliances. For simple annotations, basic drawing
primitives for scribbles, text, rectangles, etc. are provided.
Other metadata can be added using popup menus to
indicate the type of an object, and drawing primitives to
define its region. This is typically done in the close-up
view for greater precision.

Metadata is organized in a class hierarchy of object types.

Entity
Scribble
Person

Speaker
Appliance

Display
Printer
…

Objects have attributes and methods that are inheritable
through the class hierarchy. The attributes include the
extent, which is the region covered by the object, defined
by a rectangle or poly-line, and auxiliary information such
as URLs of informative web pages. Methods define
behaviors such as responses to user interface actions like
mouse events. The following is pseudo code for a typical
object:

Controllable Entity {

X, Y; // coordination in the virtual video canvas

Region; //extent of this object, defined

// by a rectangle or poly-line

Type; // Object type: txt annotation, scribble

// annotation, hotspot

ContainsPoint(x,y); // Used for hit detection

Draw(context, mode);

OnMouseIn(event); //handlers for mouse events

OnMouseOut(event); // …

….

}

Figure 5 illustrates the definition of metadata objects
corresponding to controllable displays. Each of the white
rectangular regions defines one of the displays. Note that
these rectangles appear in both the panoramic and close-up
windows, which may both be considered as views onto the
same video canvas. In the NoteLook application we will
describe later, users can drag slides from the hotspots
corresponding to these displays and make notes on them.
For a unified way to handle hotspot interaction, a special
hotspot for users’ local desktop is introduced to support the
file drag and drop operation between the remote devices
and the local folder.

4.2 Device Control via Hotspots
When multiple people discuss a project in a meeting room,
people frequently share drawings on a common area, such
as a white board or a large poster. If drawings are accepted
by a display hotspot, the display server will take drawings

from users and display the result. This functionality can
facilitate shared-drawings for both remote participants and
onsite participants. Participants with a PC or PDA can
draw figures directly in the video window without walking
to a shared-screen. The system can attach labels or other
annotations to the live video. For example, when we hold a
videoconference between a US group and a Japanese
group, it sometimes difficult for us to remember every
colleague’s name in another group. We tackle this problem
by manually attaching names to sitting participants. Figure
6 shows an example of this application.

Figure 6. Canvas annotation tool, used to define
hotspots and metadata.

4.3 The Video Canvas and Video Views.
To support direct operations on a close-up view, we need to
form the mapping between the panoramic view and the
close-up view. Since FlySPEC can provide the current
corresponding rectangle of the close-up view in the
panoramic image, we can use an approximate linear
mapping to get the hot spot rectangle in the current close-
up view.

Consider a window of width W and height H showing a
close-up view of the region centered at x,y and of width w
and height h. Then a point in that view with view
coordinates (vx, vy) may be mapped to a corresponding
point in the canvas with canvas coordinates (cx , cy) by:

cx = x + vx * (w/W)
cy = y + vy * (h/H)

and points may be mapped from canvas coordinates to view
coordinates by the inverse mapping. In this way, mouse
events or annotation data drawn in one view may be

Jim Candy Kaz

JimCandy Kaz
Tad

Fran

Patrick

mapped to the canvas coordinate system, and then to any
other view. This is demonstrated in Figure 5, which shows
rectangular metadata defining four different displays, seen
in both the panoramic overview, and the close-up view.
Mouse events can also be mapped this way to determine
when mouse events occur within various hotspots.

5. SYSTEM DEPLOYMENT AND
APPLICATION SCENARIOS
As our prototype, the meeting device control system is
deployed in a mid-sized corporate conference room. To
provide sufficient video views of the conference
environment, multiple FlySPECs were installed at different
locations in the conference room. Figure 7 is a top view
illustration of the meeting room layout. In this meeting
environment, FlySPEC1 is normally used to cover on-site
meeting participants. FlySPEC2 is used to cover the
conversation between the presenter and on-site participants.

FlySPEC3 is mainly used to cover the presenter and
presentation screens.

Figure 7. Top view of the meeting room layout

Figure 8. Dragging a slide from screen 1 to screen 2.

Figure 9. When the mouse cursor moves to the hot spot defined for the printer, it is changed to printer shape.

5.1 Web Browser Supported Interface
To encourage people to use our system in their daily lives,
we first implemented a web-based client interface as that

shown in Figure 4. In this interface, the overview video
window was implemented as a Java Applet. This Java
Applet can analyze users’ gestures and send proper web

Screen 1 Screen 2

Mouse Path
Destination

Printer Cursor

Podium

Plasma display

Plasma display

FlySPEC 1

FlySPEC 2

FlySPEC 3

Plasma display

Plasma display
Back-projected display

requests corresponding to these gestures. In our
implementation, we define the left-mouse-button activated
gesture as camera control gesture, and the right-mouse-
button activated gesture as general device control gesture.
In other words, when a user draws a path with his/her left-
mouse-button down, the path will be mapped to a camera
control command. When a user draws a path with the
right-mouse-button down, the path will be mapped to a
general device control command.

With this web-based implementation, a user can drag
presentation slides among screens shown in the same video
window. More specifically, if we want to drag the slide
from screen1 to screen2, we may press the right-mouse-
button on screen1, and release the mouse button on
screen2. Figure 8 shows the overview window when we
try to move a slide from screen 1 to screen 2. The black
line and the black dot are marks the applet shows in the
window. The callouts are only used to assist our
explanation, and are not parts of our interface.

To achieve this drag-and-drop functionality, our system has
to run a lightweight server on each presentation computer
for slide management. When a presentation is performed
in the meeting room, the presenter’s slides are first
translated into a sequence of JPEG images in a file
directory, and the names of these JPEG images are used by
the whole system to reference individual slide. After the
slide translation, names of all slides are loaded to a screen
server to form a stack. Slides are managed as stacks by all
screen servers, and only the top slide in a stack can be
displayed on a screen. With this mechanism, the presenter
and some authorized participants are free to move slides
across screens for project discussions. When a user drags a
slide from a source to a destination, the gesture is first
interpreted by the Java Applet, and the applet will send a
http request to the appliance control server. After the
appliance control server receives the http request, it will
send control commands to corresponding devices. When a
destination screen server receives a display command and
the name of a specific slide, the name of the slide will be
put on the top of the server stack. On the other hand, the
source screen server will remove the top of its stack and
select the next available slide as the top slide.

Screens can be both source and destination during the drag-
and-drop operation. By slightly modifying the screen
server, the system can support meeting participants to drag
files to the hot spot of an onsite printer. For example, the
printer in our deployment can be found on the right parts of
Figure 8 and Figure 9. With this functionality, users of our
system can conveniently print out slides in the meeting
room for records.

5.2 Handling Desktop Files
Even though the web-based interface ensures the basic
accessibility to our system, it is restricted by Java applet
limitations from handling some operations such as dragging
a file from a desktop to a presentation screen. We tackled
this problem by developing a wrapper application using
COM Object techniques. The application loads the
webpage (described in a previous section) in its window. A
meeting participant can still use the gestures defined for the
web-based interface. To activate extended gestures, such
as dragging a file from the desktop to a presentation screen,
the applicant should double click the mouse in the
application window but outside of the video window. The
cost of using these extended gestures is a lightweight
application on a user’s computer.

Figure 10. When the mouse icon moves to the hot spot
for the screen, the icon is changed to hand shape. This
hand-shape icon indicates that the user is allowed to
manipulate the screen.

This application supports dragging files to remote screens,
loudspeakers, or printers. It also supports dragging a file
from the screen to an audience member’s desktop when the
presenter of the seminar has an interesting file shown on
the screen. Via the overview window or the close-up
window, the user can immediately see his/her control
results.

In this implementation, we also added some intuitive
cursors to remind users the available functions. More
specifically, when a user moves the mouse cursor in the

Hand cursor for
reminding screen

operations

overview video window or the close-up video window, the
shape of the cursor will be changed according to the hot-
spot region it covers. In Figure 9, when the mouse cursor
moves to the hot spot for a printer in the overview window,

it is changed to printer shape. In Figure 10, when the
mouse cursor passes the hot spot for the screen in the close-
up window, it is changed to a hand-shape to remind the
user of screen operations.

Figure 11. NoteLook 3.0 Screen Shot.

5.3 NoteLook Application
We also incorporated some basic screen control techniques
into our NoteLook 3.0 pen-based application to support
annotating slides in our multi-display meeting environment
[1, 2]. NoteLook facilitates meeting participants in taking
notes with personal devices, such as - TabletPC, laptop, or
a remote desktop PC. It allows meeting participants to grab
a slide or take an image of the meeting and make
annotations on it. In this system, all slides and camera
shots are handled as JPEG, GIF, or PNG images. Figure 11
shows our most recent NoteLook 3.0 interface. In this
interface, a live panoramic video of the meeting room is
shown on top of the screen. On the right side of the video
window, a spin button is used to cycle through multiple

panoramic video sources. The 4 dashed boxes (three
appear in the video window and one surrounds the note-
taking page) are hot spots that can support gesture-based
screen operations. The big dot on top of each dashed box is
the handle for moving slides from that hot spot, while the
slash in a hot spot bans a user from dragging slides from
other hot spots to it. With this interface, a user can move a
slide from the first hot spot to the second by dragging the
handle of the first hot spot and put it in the second hot spot
that authorizes this operation. For example, a user can drag
the slide shown on the center public screen to the note-
taking area. After making annotations on the slide (as
shown in the figure), the user can drag this annotated slide
to the left side public screen for discussion.

6. SUMMARY AND FUTURE WORK
We have presented the design and implementation of a
meeting-room device-control system based on interactive
video-. With this system, an offsite or onsite meeting
participant or presenter can easily manage presentation
screens, notes, and onsite printing by performing gestures
over live meeting videos. By extending this idea, we can
define more hot spots associated with other appliances in
the scene, and give remote users more control of the
conference room. For example, we can define audio-
monitor-hot-spots, and drag a music file to an audio-
monitor-hot-spot to play music in the conference room. Or,
we can also define light-hot-spots and turn on/off lights by
clicking them.

Currently, we hardwired all hot spots in our system. In the
future, we want to set up a hot-spot definition mode and
bind basic control functions with predefined icons. When a
system administrator sets the system to the hot-spot
definition mode, video windows and all control icons will
be shown to the administrator side-by-side. Then the
administrator can select a region with a mouse and drag all
corresponding control functions to that region with the
mouse.

We also want to attach transmitter to various objects, and
use sensors to detect locations of those objects. With this
approach, hot spots can be defined dynamically. When the
hot spots can be defined dynamically, remote users are
allowed to control moving devices.

Defining hot spot automatically is another interesting
research branch. If we can use image patterns of some
basic devices to find these devices in the video
automatically, hot spots may be defined automatically.
Even though state-of-the-art vision techniques still cannot
do a perfect job on object recognition, if an administrator
can overwrite the definition, this technique is still feasible
and can save people’s time.

Finally, it will be ideal if our device-control system can be
installed on a mobile platform, and be used in various
changing environments.

7. ACKNOWLEDGEMENTS
The authors would like to thank Jonathan Helfman for his
helpful comments to this paper.

8. REFERENCES
[1] Chiu, P., Kapuskar, A., Reitmeier, S., and Wilcox, L.

NoteLook: Taking notes in meetings with digital video
and ink, Proceedings of ACM Multimedia’99. ACM
Press, pp. 149-158.

[2] Chiu, P., Liu, Q., Boreczky, J., Foote, J., Fuse, T.,
Kimber, D., Lertsihichai, S. and Liao, C.

Manipulating and annotating slides in a multi-display
environment, Proceedings of INTERACT ’03, to
appear.

[3] Darrell, T., Maes, P., Blumberg, B., Pentland, A.P. A
Novel Environment for Situated Vision and Behavior,
MIT Media Lab Perceptual Computing Technical
report, No. 261, (1994).

[4] Fjeld, M., Ironmonger, N., Voorhorst, F., Bichsel, M.,
& Rauterberg, M. Camera control in a planar,
graspable interface, Proceedings of the 17th IASTED
International Conference on Applied Informatics
(AI’99), pp.242-245.

[5] Foote, J., and Kimber, D. FlyCam: Practical
Panoramic Video, Proceedings of IEEE International
Conference on Multimedia and Expo, vol. III, pp.
1419-1422, 2000.

[6] Goldberg, K., Song, D.Z., and Levandowski, A.
Collaborative Teleoperation Using Networked Spatial
Dynamic Voting, Proceedings of IEEE, Special issue
on Networked Robots, 91(3), pp. 430-439, March
2003.

[7] iVast�, iVast Studio SDK� -- Author and Encode,
http://www.ivast.com/products/studiosdk.html

[8] Khotake, N., Rekimoto, J., and Anzai, Y. InfoPoint: A
Direct-Manipulation Device for Inter-Appliance
Computing,
http://www.csl.sony.co.jp/person/rekimoto/iac/

[9] Mississippi ETV Interactive Video Network.
http://www.etv.state.ms.us/inter-net/home.html

[10]Liu, Q., Kimber, D., Foote, J., and Liao, C.Y.
MULTICHANNEL VIDEO/AUDIO ACQUISITION
FOR IMMERSIVE CONFERENCING, Proceedings
of IEEE International Conference on Multimedia and
Expo, Baltimore, MD, U.S.A., July 6-9, 2003, to
appear.

[11]Liu, Q., Kimber, D., Foote, J., Wilcox, L. and
Boreczky, J. FLYSPEC: A Multi-User Video Camera
System with Hybrid Human and Automatic Control,
Proceedings of ACM Multimedia 2002, pp. 484-492,
Juan-les-Pins, France, December 1-6, 2002.

[12]Stenzler, M.K., and Eckert, R.R. Interactive Video,
SIGCHI bulletin, vol. 28, no.2, April 1996.

[13]Tani, M., Yamaashi, K., Tanikoshi K., Futakawa, M.,
and Tanifuji, S. OBJECT-ORIENTED VIDEO:
INTERACTION WITH REAL-WORLD OBJECTS
THROUGH LIVE VIDEO, Proc. of ACM CHI92, pp.
593-598, May 3-7, 1992.

[14]Tantaoui, M.A., Hua, K.A., and Sheu, S. Interaction
with Broadcast Video, Proceedings of ACM
Multimedia 2002, pp.29-38, Juan-les-Pins, France,
December 1-6, 2002.

[15]VideoClix�, VideoClix Authoring Software,
http://www.videoclix.com/videoclix_main.html

[16]Zollman, D.A., and Fuller, R.G. Teaching and
Learning Physics with Interactive Video,
http://www.phys.ksu.edu/perg/dvi/pt/intvideo.html

