
1

Computation and Performance Issues In
Coliseum, An Immersive Videoconferencing

System
H. Harlyn Baker, Nina Bhatti, Donald Tanguay, Irwin Sobel, Dan Gelb, Michael E.

Goss, John MacCormick, Kei Yuasa, W. Bruce Culbertson and Thomas Malzbender*
Hewlett-Packard Laboratories

Palo Alto, CA

 *{harlyn.baker, nina.bhatti, donald.tanguay, irwin.sobel, mike.goss, dan.gelb, john.maccormick, kei.yuasa, bruce.culbertson, tom.malzbender}@hp.com

ABSTRACT
Coliseum is a multiuser immersive remote teleconferencing
system designed to provide collaborative workers the experience
of face-to-face meetings from their desktops. Five cameras are
attached to each PC display and directed at the participant. From
these video streams, view synthesis methods produce arbitrary-
perspective renderings of the participant and transmit them to
others at interactive rates, currently about 15 frames per second.
Combining these renderings in a shared synthetic environment
gives the appearance of having all participants interacting in a
common space. In this way, Coliseum enables users to share a
virtual world, with acquired-image renderings of their
appearance replacing the synthetic representations provided by
more conventional avatar-populated virtual worlds. The system
supports virtual mobility—participants may move around the
shared space—and reciprocal gaze, and has been demonstrated

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MM’03, November 2-8, 2003, Berkeley, California, USA.
Copyright 2003 ACM 1-58113-722-2/03/0011…$5.00.

in collaborative sessions of up to ten Coliseum workstations, and
sessions spanning two continents. This paper summarizes the
technology, and reports on issues related to its performance
CR Categories: H.4.3 [Information Systems
Applications]: Communications Applications – Computer
conferencing, teleconferencing, and videoconferencing.

General Terms Algorithms, Measurement, Performance,
Design, Experimentation.

Keywords Telepresence, Videoconferencing, View
Synthesis.

1 INTRODUCTION
For decades, videoconferencing has been sought as a
replacement for travel. Bandwidth limitations and the
accompanying issue of quality of the enabled experience have
been central to its delayed arrival. Resolution and latency lead
the way in objectionable factors but, were these resolved, close
behind would come the issues that separate mediated from direct
communication; the sense of co-presence, access to shared
artifacts, the feeling of communication that comes from the
passing of subtle through glaring signals that characterize face-
to-face meetings. In the Coliseum project, we are working

Figure 1. The Coliseum immersive videoconferencing system

2

toward establishing a facility to meet these communication
needs through a thorough analysis of the computational,
performance, and interaction characteristics demanded for
universally acceptable remote collaboration and conferencing.
Our goal has been to demonstrate, on a single desktop personal
computer, a cost-effective shared environment that meets the
collaboration needs of its users. The solution must provide for
multiple participants–from two to tens or more–and support
them with the required elements of person-to-person interaction.
These elements include:

• Acceptable video and audio quality, including resolution,
latency, jitter, and synchronization

• Perceptual cueing such as motion parallax and consistent
reciprocal gaze

• Communicating with words, gestures and expressions over
ideas, documents and objects

• Joining and departing as easy as the walking into a room

Traditional telephony and videoconferencing provide some of
these elements, including ease of use and audio quality, yet fail
on most others. Our Coliseum effort aims to advance the state of
videoconferencing by applying recent advances in image-based
modeling and computer vision to bring these other elements of
face-to-face realism to remote collaboration.

Scene reconstruction, the task of building 3D descriptions using
the information contained in multiple views of a scene, is an
established challenge in computer vision [8]. It has seen
remarkable progress over the last few years due to improved
algorithms [10, 11, 14] and faster computers. The Coliseum
system is based on the Image-Based Visual Hulls (IBVH)
image-based rendering scene reconstruction technology of MIT
[9]. Our recent Coliseum efforts have shown that the IBVH
method can operate at video rates from multiple camera streams
hosted by a single personal computer [1].

Each Coliseum participant works on a standard PC with LCD
monitor and a rig housing five video cameras spaced at roughly
30 degree increments, as shown in Figure 1. During a
teleconferencing session, Coliseum builds 3D representations of
each participant at video rates. The appropriate views of each
participant are rendered for all others and placed in their virtual
environments, one view of which is shown in Figure 2. The
impression of a shared space results, with participants free to
move about and express themselves in natural ways, such as
through gesture and gaze.

Figure 2. Two Coliseum users in a shared virtual environment,
as seen by a third.

Handling five video streams and preparing 3D reprojection
views for each of numerous coparticipating workstations at
video rates is a formidable task. Tight control must be exercised
on computation, process organization, and inter-desktop
communication. At project inception, we determined we needed
an effective speedup of about one hundred times over the MIT
IBVH processing on a single PC to reach utility. Our purpose in
this paper is to detail some of the major issues in attaining this
performance.

2 RELATED WORK
The pursuit of videoconferencing has been long and
accomplished [17]. While available commercially for some
time, such systems have in large part been met with less than
total enthusiasm. Systems rarely support more than two
participating sites, and specially equipped rooms are often
required. Frame rates and image quality lag expectations, and
the resulting experience is of blurry television watching rather
than personal interchange. Our intention in Coliseum has been to
push the envelope in all dimensions of this technology—display
frame rate and resolution, response latency, communication
sensitivity, supported modalities, etc.—to establish a platform
from which, in partnership with human factors and remote
collaboration experts, we may better understand and deliver on
the requirements of this domain.

Two efforts similar to ours in their aim for participant realism
are Virtue [15] and the National Tele-Immersion Initiative [7].
Both use stereo reconstruction methods for user modeling, and
embed their participants in a synthetic environment. As in
traditional videoconferencing, these systems are designed for a
small fixed number of participating sites. Neither supports
participant mobility. Prince [12] uses Image-Based Visual Hulls
for reconstruction and transmission of a dynamic scene to a
remote location, although does not apply it to multi-way
communication. Chen [2] and Gharai [6] present
videoconferencing systems supporting large numbers of users
situated individually and reorganized into classroom lecture
settings. While both demonstrate some elements we seek—the
first examining perceptual issues such as gaze and voice
localization and the second including image segmentation to
place participants against a virtual environmental backdrop—
neither reaches for perceptual realism and nuanced
communication in the participant depictions they present.

3 THE COLISEUM SYSTEM
Coliseum is designed for desktop use serving an individual
conference participant. Five VGA-resolution cameras on a
single IEEE 1394 FireWire bus provide video, and a microphone
and speaker (or ear bud) provide audio. Coliseum participants
are connected over an ethernet or internet.

Coliseum is a streaming media application and, as is typical for
such applications, has media flowing through a staged dataflow
structure as it is processed. Figure 3 depicts the simplified
processing pipeline for Coliseum, showing the four stages of
image acquisition, 2D image analysis, reconstruction and
rendering, and display. First, the cameras each simultaneously
acquire an image. Second, 2D image analysis (IA) identifies the
foreground of the scene and produces silhouette contours
(section 3.1). Third, IBVH constructs a shape representation

3

from the contours and renders a new viewpoint using the
acquired video and current visibility constraints (section 3.2).
Finally, the image is rendered and sent for display at the remote
site.

Coliseum’s viewer renders conference participants within a
VRML virtual environment and provides a graphical user
interface to the virtual world for use during a session. This
allows participants to look around and move through the shared
space, with others able to observe those movements.

The Coliseum viewer has features intended to enhance the
immersive experience. Consistent display of participants is
achieved through their relative placement in the virtual world.
Head tracking will allow alignment of gaze with the placement
of those addressed. In this way, as in the real world, a user will
make eye contact with at most one other participant at a time.
Use of motion parallax (section 3.3) further reinforces the
immersive experience by making an individual’s view
responsive to his movements.

Figure 3. The simplified Coliseum processing pipeline: image
acquisition from synchronized cameras, 2D image analysis,
reconstruction, and display of the rendering for a particular view
point.

Critical to metric analysis of video imagery is acquiring
information about the optical and geometric characteristics of
the imaging devices. Section 3.4 describes our methods for
attaining this through camera calibration. This method is meant
to be fast, easy to use, and robust. Sections 3.5 and 3.6 describe
the session management and system development aspects of
Coliseum.

3.1 Image Processing
The image processing task in Coliseum is to distinguish the
pixels of the participant from those of the background and
present these to a rendering process that projects them back into
the image—deciding which pixels constitute the user and should
be displayed for other participants. Foreground pixels are
distinguished from background pixels through a procedure that

begins with establishing a background model, acquired with no
one in the scene. Color means and variances computed at each
pixel permit a decision on whether a pixel has changed
sufficiently to be considered part of the foreground. The
foreground is represented as a set of regions, delineated by their
bounding elements and characterized by properties such as area,
perimeter, and variation from the background they cover.

Ideally, these foreground computations would be occurring at 30
frames per second on all five cameras of our Coliseum system.
Sustaining an acceptable frame rate on VGA imagery with this
amount of data calls for careful algorithmic and process
structuring. In aiming for this, a few principles have guided our
low-level image processing:
• Focus on efficiency (i.e., touch a pixel as few times as

necessary—once, if possible—and avoid data copying),
using performance measuring tools to aim effort

• Use lazy evaluation to eliminate unnecessary computation
• Provide handles for trading quality for speed, so host

capability can determine display/interaction characteristics

Following these guidelines, we have made several design
choices to attain high performance:
1. Acquire the raw Bayer mosaic. This enables us to run five

full VGA cameras simultaneously at high frame rate on a
single IEEE 1394 bus. Imagers generally acquire color
information with even scan lines of alternating red and
green pixels followed by odd scan lines of alternating green
and blue pixels (termed the Bayer mosaic); the camera
converts these to color pixels, typically in YUV422 format.
This conversion doubles the bandwidth, and would
necessitate halving the number of cameras or the frame rate
on the limited IEEE 1394 bus.

2. Employ a fast and specialized foreground contour extractor.
In one pass over the image, ours determines the major
foreground objects, ranks them by variation from the
background, and accommodates to luminance changes –
both shadows and gradual light level fluxuations. With
adjustable sampling of the image, it finds the subject
rapidly while retaining access to the high quality texture of
the underlying imagery. Detecting image foreground
contours at reduced resolution by adjusting the sampling
step allows greater image throughput without the loss of
image information that accompanies use of a reduced-
resolution data source–throughput increases with the square
of the sampling. Contour localization doesn’t suffer as
much as it might with decimated sampling since our
method relocalizes using the full image resolution in the
vicinity of each detected foreground contour element.

Figure 4. Left: background model image; Center foreground contours; Right: foreground after shadow suppression.

4

Figure 4 demonstrates the illumination adaptation, and
Figure 5 shows sampling variations.

3. Reduce foreground contour complexity by using piecewise
linear approximations. The cost of constructing the visual
hull increases with the square of the number of contour
elements, so fewer is better. Figure 6 shows this processing.

4. Correct lens distortion on foreground contours rather than
on the acquired camera imagery. This means we transform
tens of vertices rather than 1.5 million pixels on each
imaging cycle.

5. Resample color texture for viewpoint-specific rendering
only as needed (on demand). With color not explicit (as 1,
above), and lens correction postponed (as 4, above), image

data for display must be resampled. The on demand means
that only those pixels contributing to other participants’
view images will be resampled.

6. Rendering a (typical) 300 by 300 IBVH resultant image for
each participant would require 90000 complex ray-space
intersections at each time step across all cameras. This
computation is parameterized to trade quality for speed;
we sample and interpolate these rays in the interior and
along the boundaries of the hull.

3.2 Reconstruction
We use IBVH to render each participant from viewpoints
appropriate for each other participant. IBVH back projects the

Figure 5. Various image contour samplings: 1: 4: 8 = 100%, 6%, 1.5% of the image.

Figure 7. View of user in Coliseum space: Five cameras surround the rendered user. Each camera shows
its coordinate system (in RGB), video frame, and foreground contour.

Figure 6. Contour of 525 segments, linear approximations with (max pixel error, segments) = (4,66), (8,22), (16, 14).

5

contour silhouettes into three space and computes the
intersection of the resulting frusta. The intersection, the visual
hull, approximates the geometry of the user (see Figure 8).
Rendering this geometry with view-dependent texture mapping
creates convincing new views. While we could send 3D models
of users across the network and render them with the
environment model in the Coliseum viewer, less bandwidth is
required if we render all the needed viewpoints of a user locally
and then send only 2D video and alpha maps. We use MPEG4 to
compress the video. Since the majority of displayed pixels
comes from the environment model and is produced locally, the
video bandwidth requirements are low. Figure 7 shows the
results of foreground contouring, displayed with the visual hull
they produce, in the space of the five Coliseum cameras.

While the IBVH algorithm is fast when compared with other
reconstruction methods, it has shortcomings. The quality of
scene geometry represented depends on the number of acquiring
cameras and surface concavities are not modeled. This
geometric inaccuracy can cause artifacts when new views are
synthesized. To address this issue, we employed an extension to
IBVH called Image-Based Photo Hulls (IBPH) [16] which
refines the visual hull geometry by matching colors across the
images. This results in a tighter fit to the true scene geometry.

Using an assumption of Lambertian reflectance, voxel coloring
[14] can be used to test whether a 3D point lies on a surface—
points that project to similar colors in all the images that see
them are termed photo consistent. IBPH uses this test to refine
the coarse visual hull produced by IBVH. IBPH iteratively
evaluates the photo consistency of IBVH surface points by
moving them a small step in or out with respect to the
synthesized viewpoint in a process similar to space carving [3].
Refinement is continued until the geometry projects to photo-
consistent colors in the images.

Figure 8 shows that the improved geometric accuracy of the
photo can make significant improvement to the quality of the
synthesized view. In the original IBVH-produced image,
adjacent textures from different cameras appear to be
misregistered because of the inaccurate geometry; this error is
reduced in the IBPH image. The depth maps reveal the increased
geometric detail of the IBPH model that leads to this
improvement.

3.3 Motion parallax
A successful tele-immersion system will make its users feel part
of a shared virtual environment. The use of low-latency motion
parallax (quantified in [13]) will provide this. Considering the
screen as a window onto a virtual world, head movement should
induce a corresponding view change. To achieve this, we track
user head position and update the display as appropriate.

Head position is estimated using an image-based tracker that
operates by fitting a 3D ellipsoid to the silhouette contour of the
head in each of the five Coliseum camera views. Since these
silhouettes are already being used for reconstruction, the
additional cost of the head tracker is fairly small.

The tracker operates in linear and nonlinear modes. In the linear
mode, a 2D ellipse is fit to the head contour in each image
independently using robust reweighted least squares [5]. These
head contours are obtained from that part of the foreground
silhouette above an estimated shoulder height. For stability, this
is heavily filtered with a time constant of approximately one

second. The 3D head position is estimated as the point of closest
intersection of the rays obtained by back-projecting the ellipse
centers. In the nonlinear mode, we model the head as a 3D
ellipsoid of fixed size, and use Levenberg-Marquardt
optimization to minimize an error based on the distance of head
contour points from the ellipsoid's projection.

Figure 8. IBVH (top) versus IBPH (bottom). Texture-mapped
model (left) and depth map (right).

The linear mode generates an independent solution for each
frame, but the standard deviation of its estimates (8 mm) is over
twice that of the nonlinear approach (3 mm). The nonlinear
mode, on the other hand, requires a good initial estimate from
the previous frame. Therefore, we use linear mode to initialize
when a user first appears or immediately after an unexpected
failure, and then switch to nonlinear mode for better incremental
performance. A simple adaptive filter is used to eliminate jitter
when the user’s head is motionless.

3.4 Camera Calibration
Our scene reconstruction requires knowledge of the imaging
characteristics and pose of each camera. These parameters
include:
• Lens distortion, to remove image artifacts produced by

each camera’s lens (our use of wide-angle lenses
exacerbates this)

• Intrinsics, that describe how an image is formed at each
camera (focal length, aspect ratio, and center of projection)

• Extrinsics, relating the pose (3D position and orientation)
of each camera to some global frame of reference

• Color transforms, to enable color-consistent combination
of data from multiple cameras in producing a single display
image

All of these parameters must be computed before system use
and, in a deployable system such as ours, any of them may need
to be recomputed when conditions change.

6

Figure 9 shows the target we use for parameter estimation—a
10-inch cube with four colored squares on each face (totaling 24
colors plus black and white). A differential operator detects
contour edges in luminance versions of the images, and then a
classifier verifies that a detected face contains four squares. The
large size and color of the squares make them easier to detect
and match, while the multiple faces provides both enough color
for good colorimetric modeling, and opportunity for all of the
cameras to be acquiring geometric calibration data at the same
time.

The face components supply the elements for determining the
calibration parameters. Lens distortion correction is computed
by determining the radial polynomial that straightens the target
faces’ black boundaries [4]. Intrinsic parameters are derived
from the homographies that rectify the colored squares from
their projected shapes [18]. Camera extrinsics are estimated in a
two-stage process that starts with initial adjacent-pair pose
estimates using a nonlinear variant of a stereo solver [8] applied
to matched square vertices. These poses are chained together
and iteratively solved in pairs to minimize error. A bundle
adjustment minimizes the total calibration error. The
correspondences are implied when observed faces are matched
to the target faces, with this matching made more robust by the
simultaneous visibility of several faces to a single camera. The
color of each square is known—they resemble those of a
Macbeth Color Chart—so the colors observed can be used to
determine each camera’s color transform.

Figure 9. Calibration Target

3.5 Session management
Session management is performed through the Hub subsystem,
built using the Microsoft DirectPlay API. A Hub host process
for each session runs on a central server and processes connect
and disconnect events, notifying session members when other
users join or leave. A new user may connect to any existing
session, or initiate a new session by starting a new host process.
Communications among users during a session are peer to peer.
When a new user connects to a session, the local portion of the
Hub subsystem determines compatible media types between
itself and other users, and notifies the local and remote media
transmission and reception modules. These media modules
communicate directly using datagram protocols. A multi-stream
UDP protocol allows coordination of different media-type
network transmissions. Figure 10 illustrates the dynamic
structure of a Coliseum application with session management.

3.6 Software framework
Streaming media applications are difficult to develop:

1. Digital media processing and services are inherently
complex and often require orchestration among multiple
developers.

2. These applications require simultaneous processing of
multiple content streams which implies use of advanced
programming techniques such as multithreading and
synchronization objects.

3. To deliver a real-time user experience, optimal
performance is required on limited computational
resources, and this necessitates flow control and buffer
management.

 Figure 10. Coliseum scalable processing pipeline: On a single
participant’s Coliseum station, the shaded sub-pipelines are
added and subtracted from the application as remote participants
enter and leave the conferencing session.

In implementing Coliseum, we have created a flexible, multi-
platform, software framework that simplifies the development of
such streaming media applications. This framework allows an
application’s processing to be decomposed into a task
dependency network and automates the parallelism among those
tasks.

A dataflow architecture is designed around the travel of data. By
observing the data lifecycle throughout the application, one may
define a pipeline of distinct processing stages that can be clearly
expressed as a directed graph. Our framework addresses all three
of the difficulties to developing streaming media applications:
1. A designer decomposes the application into well-defined,

connected task modules to isolate the complexity of each
processing stage.

2. An automatic scheduler analyzes the task decomposition
and then automates parallelism during execution.

3. The task scheduler achieves real-time performance via
automated flow control.

This design simplifies development at all stages, from
prototyping to maintenance. A dataflow API hides details of
multithreading and synchronization and improves modularity,
extensibility, and reusability. We have implemented the
framework in C++ on both Windows and Linux platforms.
Using this framework, we have developed a library of reusable

7

components for the Windows platform (e.g., audio recording
and playback, video playback, network connectivity). The
streaming media aspects of Coliseum were built using the
framework and the reusable components.

The framework has three main abstractions: Media (data unit),
Task (computation unit), and Graph (application unit):
1. Media objects represent time-stamped samples of a digital

signal, such as audio or video. A memory manager tracks
the use of Media objects through reference counting and,
for efficiency, reuses memory whenever possible. The new
Media abstraction inherits an automatic serialization
mechanism for writing into pipes, such as a file or network
buffer.

2. Task objects represent an operation on Media. The
abstraction is a black box of processing with input and
output pins, each specified with supported types of Media.
The Task completely encapsulates the processing details so
that the user knows only the functional mapping of input
pins to output pins.

3. Graph objects are implicitly defined by the connectivity of
multiple Tasks. Several commands can be issued to a graph
including those to start and stop the flow of Media among
its Tasks. Each Graph has its own scheduler, which orders
the parallel execution of Tasks.

This infrastructure provides three distinct benefits:
1. It supports an incremental development strategy for

building complex applications—a Graph with a multistage
pipeline structure can undergo testing of functional subsets
hooked to real or synthesized data sources and sinks.

2. The framework allows for dynamic graph construction.
When stopped, an application can add and remove Tasks,
then start again with a new graph while keeping the
unchanged portions intact. We use this technique in the
large, dynamic graph of Coliseum, adding and removing
portions of the graph as participants enter and depart
sessions.

3. The graph structure supports instrumentation. Keeping a
functioning Graph intact, a new Task can connect to any of
its output pins to monitor activity. This ability to “listen” is
useful for gathering statistics in a performance monitor or
to effect feedback control in modifying system parameters
on the fly.

The alternative to developing our own infrastructure was to use
an existing system such as Microsoft’s DirectShow. This was
not acceptable. Aside from being complex to learn and use, and
dependent on other layers beyond our control (such as COM),
DirectShow’s use of processes rather than threads makes it poor
for debugging multi-stream video applications. In addition, its
lack of a media scheduler means that it employs a philosophy of
discarding unused work rather than preventing it from being
done in the first place. This wastes capability in resource-critical
applications.

4 PERFORMANCE
Coliseum is a multi-way, immersive remote collaboration
system that runs on modest through advanced commodity
hardware. We have run sessions with up to ten users (all the
Coliseum systems we have available), and between North
America and Europe. Success depends on our ability to provide

videoconference functions with sufficient responsiveness, audio
and video quality, and perceptual realism to take and hold an
audience. Our objective of developing this facility to run on
single personal computers means we have to reach high levels in
our analysis algorithms as well as in their performance.
Algorithm success will be judged through observation of users
at work with the system. Before we reach this point, we must
ensure the Coliseum is structured to support the frame rates and
latencies needed for an acceptable user experience.

We have begun evaluating Coliseum’s performance in terms of
its computational and networking characteristics. Since we aim
to support large numbers of participants in simultaneous
collaboration, we are reviewing the implications of these
measures on the system’s scalability.

The following tests were conducted using dual Xeon-based PCs
with speeds of 2.0, 2.4, 2.8 or 3.06 GHz, each with 1, 2, or 4 GB
of memory, and running Windows 2000 or XP. Machines shared
a single 1000SX gigabit Ethernet connected by Cisco Catalyst
4003 10/100/1000 switches and were typically, two to three
hops apart. The network was in use at the time for other HP Lab
activities. Imagery was acquired through Point Grey Dragonfly
VGA IEEE 1394 (FireWire) cameras operating at 15 Hz. The
PC used for data collection had dual 2.4 GHz Xeon CPUs and 1
GB of memory.

4.1 Latency
Latency has a major impact on the usability of a communication
system. There are numerous contributors to overall system
latency, and we have measured various stages to assemble a
picture of the delays between actions at one site and
observations at the other. Coliseum’s latency is composed of:
• Camera latency: the time between an event occurring and

the camera making its observations available to a local
application.

• Processing Latency: the time it takes after receiving the
image data from the camera system to process it, create the
visual hull, render a requested view for a receiver, encode
this in MPEG4, and then package and ship it to the
intended recipient via UDP.

• Network Latency: the time from transmittance of the
packets from the sender to their receipt by the receiving
host, typically two switched gigabit network segment hops.

• Display Latency: the time between packet reception,
dataset reassembly, MPEG decoding, and return from
providing the data to the display drivers.

Measuring camera system latency requires an externally
observing capture device. We used a field-interlaced digital
video camera to simultaneously image both an event and the
display of that event. Our event was the illumination from a
laser pointer, directed at a Coliseum camera. The laser and the
camera’s display were simultaneously visible to the observing
video camera. Manual frame-by-frame analysis of the acquired
video provided the numbers we sought. We captured several
such events, and the table below indicates average values.

We measured camera latency in four situations:
1. A simple camera driver demonstration program

(TimeSliceDemo).
2. A standalone version of Coliseum with no network or

VRML activity (Carver).

8

3. A Coliseum test of two users with live networking, with
and without MPEG encoding.

4. A Coliseum test where the subject is both the sender and
receiver of the view (a single person loop-back conference)

Both the Coliseum and Carver measurements reflect round-trip
frame counts, so the one-way latency is half the observed figure.
The third test was done to see the effect of MPEG processing on
latency.

Figure 11 gives the average video frame count (33 ms each) for
each test. The observing video camera captured 30 frames per
second, permitting us to calculate latencies and standard
deviations. TimeSliceDemo gives us an estimate on the latency
that lies beyond our control—it is the time it takes the camera to
acquire the frame and store it in the computer. Of course, this
includes time for the camera to integrate the frame (on average,
one half of a frame, or 16 ms, for the event), to charge transfer
digitize, and ship the frame to the PC (one frame), to buffer and
DMA the data to memory, and the time for the PC to display the
frame after it has arrived (observed as perhaps one frame cycle
of the observing camera). The latter period should be
discounted. Figure 12 indicates measures of the instrumented
latency of this same system version and, comparing the
Coliseum with MPEG user tests to the instrument latency
figures, we find differences of 38 and 42 milliseconds. This
difference represents the latency that should be added to
instrumented error to derive an estimate of end-user experienced
latency.

System Frames Mean Latency (ms) stdev

TimeSliceDemo 4.25 142 16.67
Carver, MPEG 11.63 194 28.05
Coliseum, no MPEG 14.30 238 32.12
Coliseum, MPEG 16.30 271 27.28
Figure 11. Absolute user-perceived latency tests.

Glview Loop-back, subject Latency Difference

User 233 38
Bottle 229 42

Figure 12. Instrument measure of latency (ms).

We observe that the absolute user-experienced latency in
Coliseum ranges from 244 to 298 milliseconds. Enabling MPEG
encoding and decoding increases latency by 32 milliseconds.

MPEG encoding reduces the amount of data each participant
sends, but does this at the cost of additional processing. This
indicates a tradeoff we must consider in our control
considerations in system balancing.

There is a 77-millisecond difference between Coliseum and our
standalone Carver application. This is attributable to the VRML
viewer and network activity. We will see that network activity
load is minimal and that the addition is due to the VRML
control, which currently uses a busy-wait loop for its user
interface (this will change).

To determine the contributions to our latency, we manually
instrumented the code both for the Carver application (non-
networked) and for Coliseum. Timing data were collected at
various points in the code and recorded with the data set. Each
data set contained time stamps indicating when the camera
frame set was first available, image analysis and processing
time. The receiving host recorded the time to decode and display
the image. We determined the roundtrip time by adding all the
timings from both the sender and receiver and subtracting the
wait time for piggybacking the timing data on outgoing datasets.
One-way latency is half this value.

Figure 13 presents data for the Coliseum and Carver tests.
Carver is the non-networked version of Coliseum with no
VRML viewer. We tested each application with four different
subjects – a user, a prerecorded dataset of a user, a 5-gallon
water bottle, and a prerecorded dataset of the bottle. The bottle
subject is placed at approximately head height but is stationary
and several times larger than a user’s head. The prerecorded data
allow us to exercise the systems without the camera frame rate
limitation, although memory and disk accesses can similarly
affect performance. For each subject we give the one-way
latency, time to generate the image, network delay, display time.
The table also shows the achieved average frame rate and CPU
utilization. Note that these data were compiled from a later
release of the system and therefore should not be directly
compared to the data for the user-perceived latency results.

4.2 Networking Requirements
Though video usually requires considerable network bandwidth,
Coliseum’s bandwidth needs are quite modest. This is because
the virtual environment usually occupies the overwhelming
majority of the area on a Coliseum screen and, being maintained
locally, is not part of the video stream. MPEG4 further reduces
the bandwidth requirement. At 15 fps, we measured a typical
Coliseum video stream to be 616 Kbps. While Coliseum can use
TCP or UDP as a transport, all tests were conducted with UDP.

System Subject
1-way

Latency
Image

Generation Network Display
Frames/

sec
CPU

Utilization
Coliseum User 112 71 3 35 15.00 80%
 Prerecorded User 151 121 4 40 15.36 83%
 Bottle 130 95 4 45 15.00 80%
 Prerecorded Bottle 134 102 3 39 17.68 78%
Carver User 78 68 NA 10 15.00 75%
 Prerecorded User 93 77 NA 14 20.99 100%
 Bottle 65 57 NA 7 15.00 61%

 Prerecorded Bottle 95 71 NA 21 22.42 100%

Figure 13. Analysis of latency (ms)

9

Using UDP there could be hundreds of Coliseum video streams
before overloading a gigabit network.

We measured network latency in our local area network where
the two participant hosts were two network-switched hops apart.
The average network latency was 3 milliseconds, so network
latency contributes about 2% to overall latency. To characterize
the wide area performance of the system, we measured latency
on Internet 2 from HP Labs Palo Alto to a site at the University
of Colorado in Boulder. Our tests showed an average network
latency of 25 milliseconds.

4.3 Scalability

0

2

4

6

8

10

12

14

16

2 3 4 5 6 7 8 9 10
Session Size

Fr
am

es
/s

ec
on

d

0%

20%

40%

60%

80%

100%

C
PU

 U
til

iz
at

io
n

Figure 14. Change in fps and cpu utilization for increasing
Coliseum session sizes.

0

200

400

600

800

1000

1200

1400

2 3 4 5 6 7 8 9 10
Session Size

B
W

 (k
bp

s)

Figure 15. Aggregate bandwidth for different size Coliseum
sessions.

Since a major goal of Coliseum is to support video conferencing
among large groups of people, scalability is an important system
characteristic. We measured the system’s scalability by
conducting sessions of increasing population, from 2 to 10
participants (10 being the number of Coliseum systems on site).
Figure 14 shows that, as session size increased, system
performance (fps) decayed due to the increased workload of
creating images and MPEG streams for the expanding number
of view renderings required. While frame rate degraded, the
total aggregate bandwidth sent by one user remained fairly
constant which means that the system adapts to more users in a
work conserving manner. Figure 15 shows that bandwidth
climbed from 616 Kbps to 1178 Kbps as the CPU utilization
saturated and then leveled off until the session of 6 users. All in
all, the bandwidth varied 16% over the course of these session
sizes. At least this much variation is expected over any

collection of runs, as the bandwidth is sensitive to user
movement and image size.

4.4 Performance Summary
In two-way sessions, we have achieved a rate of 15 frames per
second, the maximum the FireWire bus can support (five
cameras at higher rates on FireWire is only possible with image
size reduction). Our throughput to date indicates that we have
achieved about a thirty-five-times speedup from algorithmic and
architectural innovations and a three-times speedup through
processor evolution, meeting our beginning requirement of a
hundred-fold speedup. From tests on larger numbers of users,
we find that the computational complexity of the system
dominates performance. There are a number of parameters that
can be used to reduce computation at the expense of visual
quality, and adjustment of these would allow support of more
users while maintaining interactive frame rates. The current
system reduces frame rate but maintains image quality. As the
numbers of users grows, performance stabilizes, with bandwidth
served remaining relatively constant.

Our extensive measurements of Coliseum provides a clear
breakdown of latency
• Camera latency: 20%
• Processing Latency: 50%
• Network Latency: 2% to 10% (local or wide area)
• Display Latency: 25%

These measures will direct our strategies for controlling delay
and improving system performance for large numbers of users.

Since Coliseum is a highly compute-intensive application, we
have the potential to control the end node behavior and therefore
overall system performance. With facility for graph-level
performance monitoring (section 3.6) and control parameters for
adjusting the quality—and therefore speed—of image process-
ing and display computations (section 3.1), we have the tools we
need for balancing throughput with user needs. While statically
configured for the evaluations we report here (with an image
sampling step of 2 pixels, a four-pixel maximum deviation for
linear approximations, and a hull ray sampling step of 4 pixels),
these parameters may be adjusted over time and across cameras
to meet bandwidth and throughput demands.

5 FUTURE WORK
There are numerous developments that remain in making
Coliseum a viable alternative to travel for collaborative remote
conferencing. Most immediately, we are working at increasing
frame rate and reducing latency. We are also working on
algorithms to improve the quality of the video—both the
textures rendered and the geometry on which they rest. While
focusing on realistic depiction of people in Coliseum, we know
that objects and documents also play an important role in
collaborative interactions, and will be integrating imaged
artifacts into the shared virtual space. In addition, we are
working at driving down the system’s cost and getting it into the
hands of study subjects to aid in our evaluation of user effects.

With the level of mediation we seek in Coliseum, we introduce
issues not present in traditional conferencing, such as
establishing participant layout and maintaining a mutually
consistent environment. Since we control these issues, we

10

additionally acquire the capability of moving beyond the
physically realizable, and may consider the advantages of
unorthodox participant configurations. This gives us the
opportunity for super realism, such as coercing gaze to match
intent when the acquired imagery doesn’t provide this,
highlighting the image of a speaker, incorporating documents
and other artefacts into the shared world, placing participants
around artefacts, interpreting gestures, et cetera.

6 CONCLUSIONS
Coliseum creates an immersive experience by building dynamic,
3D user models, embedding them in a shared, virtual space
through which users are free to move, and generating unique
views of the space for each user. The views convey reciprocal
gaze and depth. Interactive performance is achieved through
streamlined image processing and a software framework that is
tuned for streaming media applications. This represents the first
implementation of an immersive collaboration system
supporting an arbitrary number of users and aimed at three-
dimensional realism. While the possibility of such systems has
often been discussed in the past, actual implementations have
been incomplete, operating only one-way, using cartoon avatars,
or requiring substantial special purpose hardware. Using
commodity PCs and simple video cameras, we have run fully
symmetric Coliseum sessions with as many as ten users. Our
focus now is on structuring our processing and communications
for best performance, and then getting the system into user’s
hands for functionality studies.

7 ACKNOWLEDGEMENTS
Mike Harville, David Marimont, Greg Slabaugh, and Mat Hans
have made important contributions to this project. Sandra Hirsh
and Abigail Sellen are leading our user studies enquiries.
Wojciech Matusik, Chris Buehler, and Leonard McMillan
provided guidance on the original IBVH system.

8 REFERENCES
[1] Baker, H. H., D. Tanguay, I. Sobel, D. Gelb, M. E. Goss, W.

B. Culbertson and T. Malzbender, “The Coliseum Immersive
Teleconferencing System,” Proc. International Workshop
on Immersive Telepresence, Juan Les Pins, France,
December 2002, ACM Press.

[2] Chen, M. “Design of a Virtual Auditorium,” Proc. ACM
Multimedia 2001, Ottawa, September 2001, 19-28.

[3] Culbertson, W., Malzbender, T., Slabaugh, G., “Generalized
Voxel Coloring”, International Workshop on Vision
Algorithms, 1999, Springer-Verlag LNCS 18883, 100-115.

[4] Devernay, F., Faugeras, O., “Automatic Calibration and
Removal of Distortion from Scenes of Structured
Environments”, SPIE, volume 2567, San Diego, CA, July
1995.

 [5] Fitzgibbon, A., Pilu, M., Fisher, R., “Direct least-squares
fitting of ellipses”, IEEE Transactions on Pattern Analysis
and Machine Intelligence, 21(5), May 1999, 476-480.

 [6] Gharai, L., C. Perkins, R. Riley, A. Mankin, “Large Scale
Video Conferencing: A Digital Amphitheater,” Proc. 8th
International Conference on Distributed Multimedia
Systems, San Francisco, CA, September 2002.

 [7] Lanier, J., “Virtually There”, Scientific American, April
2001, 66-75.

 [8] Longuet-Higgins, H. “A Computer Algorithm for
Reconstructing a Scene From Two Projections”, Nature 293,
1981, 133-135.

 [9] W. Matusik, C. Buehler, R. Raskar, S. Gortler, L. McMillan,
“Image-based Visual Hulls,” SIGGRAPH 2000, 369-374.

[10] Narayanan, R., Rander, P., Kanade, T., “Constructing
Virtual Worlds Using Dense Stereo”, Proceedings of
International Conference on Computer Vision, 1998, 3-10.

[11] Pollefeys, M., “Self-calibration and Metric 3D
Reconstruction from Uncalibrated Image Sequences”,
Ph.D. Thesis, ESAT-PSI, K.U. Leuven, 1999.

[12] Prince, S., Cheok, A., Farbiz, F., Williamson, T., Johnson,
N., Billinghurst M., Kato H., “Real-Time 3D Interaction for
Augmented and Virtual Reality”, SIGGRAPH 2002
Technical Sketch, 238.

[13] Regan, M, G. S. P. Miller, S. M. Rubin, C. Kogelnik, "A
low-latency, real time hardware light field renderer",
SIGGRAPH '99, 287-290.

[14] Seitz, S., Dyer, C., “Photorealistic Scene Reconstruction by
Voxel Coloring”, Proceedings of Computer Vision and
Pattern Recognition Conference, 1997, 1067-1073.

[15] Schreer, O., Brandenburg, N., Askar, S., Trucco, E., “A
Virtual 3D Video-Conferencing System Providing Semi-
Immersive Telepresence: A Real-Time Solution in
Hardware and Software”, Proc. Int.; Conf. on eWork and
eBusiness, Venice, October 2001.

[16] Slabaugh G., Schafer, R., and Hans, M., “Image-Based
Photo Hulls,” 1st International Symposium on 3D
Processing, Visualization, and Transmission, 2002, 704-
708.

[17] Wilcox J., Videoconferencing, The Whole Picture, Telecom
Books, N.Y., ISBN 1-57820-054-7, April 2000.

[18] Zhang, Z., “A Flexible New Technique for Camera
Calibration, ” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22(11), November 2000, 1330-1334.

