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ABSTRACT 
Coliseum is a multiuser immersive remote teleconferencing 
system designed to provide collaborative workers the experience 
of face-to-face meetings from their desktops. Five cameras are 
attached to each PC display and directed at the participant. From 
these video streams, view synthesis methods produce arbitrary-
perspective renderings of the participant and transmit them to 
others at interactive rates, currently about 15 frames per second. 
Combining these renderings in a shared synthetic environment 
gives the appearance of having all participants interacting in a 
common space. In this way, Coliseum enables users to share a 
virtual world, with acquired-image renderings of their 
appearance replacing the synthetic representations provided by 
more conventional avatar-populated virtual worlds. The system 
supports virtual mobility—participants may move around the 
shared space—and reciprocal gaze, and has been demonstrated 
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in collaborative sessions of up to ten Coliseum workstations, and 
sessions spanning two continents. This paper summarizes the 
technology, and reports on issues related to its performance 
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General Terms Algorithms, Measurement, Performance, 
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1 INTRODUCTION 
For decades, videoconferencing has been sought as a 
replacement for travel. Bandwidth limitations and the 
accompanying issue of quality of the enabled experience have 
been central to its delayed arrival. Resolution and latency lead 
the way in objectionable factors but, were these resolved, close 
behind would come the issues that separate mediated from direct 
communication; the sense of co-presence, access to shared 
artifacts, the feeling of communication that comes from the 
passing of subtle through glaring signals that characterize face-
to-face meetings. In the Coliseum project, we are working 

Figure 1. The Coliseum immersive videoconferencing system 
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toward establishing a facility to meet these communication 
needs through a thorough analysis of the computational, 
performance, and interaction characteristics demanded for 
universally acceptable remote collaboration and conferencing. 
Our goal has been to demonstrate, on a single desktop personal 
computer, a cost-effective shared environment that meets the 
collaboration needs of its users. The solution must provide for 
multiple participants–from two to tens or more–and support 
them with the required elements of person-to-person interaction. 
These elements include: 

• Acceptable video and audio quality, including resolution, 
latency, jitter, and synchronization 

• Perceptual cueing such as motion parallax and consistent 
reciprocal gaze 

• Communicating with words, gestures and expressions over 
ideas, documents and objects  

• Joining and departing as easy as the walking into a room  

Traditional telephony and videoconferencing provide some of 
these elements, including ease of use and audio quality, yet fail 
on most others. Our Coliseum effort aims to advance the state of 
videoconferencing by applying recent advances in image-based 
modeling and computer vision to bring these other elements of 
face-to-face realism to remote collaboration. 

Scene reconstruction, the task of building 3D descriptions using 
the information contained in multiple views of a scene, is an 
established challenge in computer vision [8]. It has seen 
remarkable progress over the last few years due to improved 
algorithms [10, 11, 14] and faster computers. The Coliseum 
system is based on the Image-Based Visual Hulls (IBVH) 
image-based rendering scene reconstruction technology of MIT 
[9]. Our recent Coliseum efforts have shown that the IBVH 
method can operate at video rates from multiple camera streams 
hosted by a single personal computer [1]. 

Each Coliseum participant works on a standard PC with LCD 
monitor and a rig housing five video cameras spaced at roughly 
30 degree increments, as shown in Figure 1. During a 
teleconferencing session, Coliseum builds 3D representations of 
each participant at video rates. The appropriate views of each 
participant are rendered for all others and placed in their virtual 
environments, one view of which is shown in Figure 2. The 
impression of a shared space results, with participants free to 
move about and express themselves in natural ways, such as 
through gesture and gaze. 

 
Figure 2. Two Coliseum users in a shared virtual environment, 
as seen by a third. 

Handling five video streams and preparing 3D reprojection 
views for each of numerous coparticipating workstations at 
video rates is a formidable task. Tight control must be exercised 
on computation, process organization, and inter-desktop 
communication.  At project inception, we determined we needed 
an effective speedup of about one hundred times over the MIT 
IBVH processing on a single PC to reach utility. Our purpose in 
this paper is to detail some of the major issues in attaining this 
performance. 
 

2 RELATED WORK  
The pursuit of videoconferencing has been long and 
accomplished [17]. While available commercially for some 
time, such systems have in large part been met with less than 
total enthusiasm. Systems rarely support more than two 
participating sites, and specially equipped rooms are often 
required. Frame rates and image quality lag expectations, and 
the resulting experience is of blurry television watching rather 
than personal interchange. Our intention in Coliseum has been to 
push the envelope in all dimensions of this technology—display 
frame rate and resolution, response latency, communication 
sensitivity, supported modalities, etc.—to establish a platform 
from which, in partnership with human factors and remote 
collaboration experts, we may better understand and deliver on 
the requirements of this domain. 

Two efforts similar to ours in their aim for participant realism 
are Virtue [15] and the National Tele-Immersion Initiative [7]. 
Both use stereo reconstruction methods for user modeling, and 
embed their participants in a synthetic environment. As in 
traditional videoconferencing, these systems are designed for a 
small fixed number of participating sites. Neither supports 
participant mobility. Prince [12] uses Image-Based Visual Hulls 
for reconstruction and transmission of a dynamic scene to a 
remote location, although does not apply it to multi-way 
communication. Chen [2] and Gharai [6] present 
videoconferencing systems supporting large numbers of users 
situated individually and reorganized into classroom lecture 
settings. While both demonstrate some elements we seek—the 
first examining perceptual issues such as gaze and voice 
localization and the second including image segmentation to 
place participants against a virtual environmental backdrop—
neither reaches for perceptual realism and nuanced 
communication in the participant depictions they present. 

3 THE COLISEUM SYSTEM 
Coliseum is designed for desktop use serving an individual 
conference participant. Five VGA-resolution cameras on a 
single IEEE 1394 FireWire bus provide video, and a microphone 
and speaker (or ear bud) provide audio. Coliseum participants 
are connected over an ethernet or internet. 

Coliseum is a streaming media application and, as is typical for 
such applications, has media flowing through a staged dataflow 
structure as it is processed. Figure 3 depicts the simplified 
processing pipeline for Coliseum, showing the four stages of 
image acquisition, 2D image analysis, reconstruction and 
rendering, and display. First, the cameras each simultaneously 
acquire an image. Second, 2D image analysis (IA) identifies the 
foreground of the scene and produces silhouette contours 
(section 3.1). Third, IBVH constructs a shape representation 
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from the contours and renders a new viewpoint using the 
acquired video and current visibility constraints (section 3.2). 
Finally, the image is rendered and sent for display at the remote 
site. 

Coliseum’s viewer renders conference participants within a 
VRML virtual environment and provides a graphical user 
interface to the virtual world for use during a session. This 
allows participants to look around and move through the shared 
space, with others able to observe those movements.  

The Coliseum viewer has features intended to enhance the 
immersive experience. Consistent display of participants is 
achieved through their relative placement in the virtual world. 
Head tracking will allow alignment of gaze with the placement 
of those addressed. In this way, as in the real world, a user will 
make eye contact with at most one other participant at a time. 
Use of motion parallax (section 3.3) further reinforces the 
immersive experience by making an individual’s view 
responsive to his movements. 

 
Figure 3. The simplified Coliseum processing pipeline: image 
acquisition from synchronized cameras, 2D image analysis, 
reconstruction, and display of the rendering for a particular view 
point. 

Critical to metric analysis of video imagery is acquiring 
information about the optical and geometric characteristics of 
the imaging devices. Section 3.4 describes our methods for 
attaining this through camera calibration. This method is meant 
to be fast, easy to use, and robust. Sections 3.5 and 3.6 describe 
the session management and system development aspects of 
Coliseum. 

3.1 Image Processing 
The image processing task in Coliseum is to distinguish the 
pixels of the participant from those of the background and 
present these to a rendering process that projects them back into 
the image—deciding which pixels constitute the user and should 
be displayed for other participants. Foreground pixels are 
distinguished from background pixels through a procedure that 

begins with establishing a background model, acquired with no 
one in the scene. Color means and variances computed at each 
pixel permit a decision on whether a pixel has changed 
sufficiently to be considered part of the foreground. The 
foreground is represented as a set of regions, delineated by their 
bounding elements and characterized by properties such as area, 
perimeter, and variation from the background they cover.  

Ideally, these foreground computations would be occurring at 30 
frames per second on all five cameras of our Coliseum system. 
Sustaining an acceptable frame rate on VGA imagery with this 
amount of data calls for careful algorithmic and process 
structuring. In aiming for this, a few principles have guided our 
low-level image processing: 
• Focus on efficiency (i.e., touch a pixel as few times as 

necessary—once, if possible—and avoid data copying), 
using performance measuring tools to aim effort 

• Use lazy evaluation to eliminate unnecessary computation 
• Provide handles for trading quality for speed, so host 

capability can determine display/interaction characteristics 

Following these guidelines, we have made several design 
choices to attain high performance: 
1. Acquire the raw Bayer mosaic. This enables us to run five 

full VGA cameras simultaneously at high frame rate on a 
single IEEE 1394 bus. Imagers generally acquire color 
information with even scan lines of alternating red and 
green pixels followed by odd scan lines of alternating green 
and blue pixels (termed the Bayer mosaic); the camera 
converts these to color pixels, typically in YUV422 format. 
This conversion doubles the bandwidth, and would 
necessitate halving the number of cameras or the frame rate 
on the limited IEEE 1394 bus. 

2. Employ a fast and specialized foreground contour extractor. 
In one pass over the image, ours determines the major 
foreground objects, ranks them by variation from the 
background, and accommodates to luminance changes – 
both shadows and gradual light level fluxuations. With 
adjustable sampling of the image, it finds the subject 
rapidly while retaining access to the high quality texture of 
the underlying imagery. Detecting image foreground 
contours at reduced resolution by adjusting the sampling 
step allows greater image throughput without the loss of 
image information that accompanies use of a reduced-
resolution data source–throughput increases with the square 
of the sampling. Contour localization doesn’t suffer as 
much as it might with decimated sampling since our 
method relocalizes using the full image resolution in the 
vicinity of each detected foreground contour element. 

Figure 4. Left: background model image; Center foreground contours; Right: foreground after shadow suppression. 
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Figure 4 demonstrates the illumination adaptation, and 
Figure 5 shows sampling variations. 

3. Reduce foreground contour complexity by using piecewise 
linear approximations. The cost of constructing the visual 
hull increases with the square of the number of contour 
elements, so fewer is better. Figure 6 shows this processing. 

4. Correct lens distortion on foreground contours rather than 
on the acquired camera imagery. This means we transform 
tens of vertices rather than 1.5 million pixels on each 
imaging cycle. 

5. Resample color texture for viewpoint-specific rendering 
only as needed (on demand). With color not explicit (as 1, 
above), and lens correction postponed (as 4, above), image 

data for display must be resampled. The on demand means 
that only those pixels contributing to other participants’ 
view images will be resampled. 

6. Rendering a (typical) 300 by 300 IBVH resultant image for 
each participant would require 90000 complex ray-space 
intersections at each time step across all cameras. This 
computation is parameterized to trade quality for speed;  
we sample and interpolate these rays in the interior and 
along the boundaries of the hull. 

3.2 Reconstruction 
We use IBVH to render each participant from viewpoints 
appropriate for each other participant. IBVH back projects the 

Figure 5. Various image contour samplings: 1: 4: 8 = 100%, 6%, 1.5% of the image. 

Figure 7. View of user in Coliseum space: Five cameras surround the rendered user. Each camera shows 
its coordinate system (in RGB), video frame, and foreground contour. 
 

Figure 6. Contour of 525 segments, linear approximations with (max pixel error, segments) = (4,66), (8,22), (16, 14). 
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contour silhouettes into three space and computes the 
intersection of the resulting frusta. The intersection, the visual 
hull, approximates the geometry of the user (see Figure 8). 
Rendering this geometry with view-dependent texture mapping 
creates convincing new views. While we could send 3D models 
of users across the network and render them with the 
environment model in the Coliseum viewer, less bandwidth is 
required if we render all the needed viewpoints of a user locally 
and then send only 2D video and alpha maps. We use MPEG4 to 
compress the video. Since the majority of displayed pixels 
comes from the environment model and is produced locally, the 
video bandwidth requirements are low. Figure 7 shows the 
results of foreground contouring, displayed with the visual hull 
they produce, in the space of the five Coliseum cameras. 

While the IBVH algorithm is fast when compared with other 
reconstruction methods, it has shortcomings. The quality of 
scene geometry represented depends on the number of acquiring 
cameras and surface concavities are not modeled. This 
geometric inaccuracy can cause artifacts when new views are 
synthesized. To address this issue, we employed an extension to 
IBVH called Image-Based Photo Hulls (IBPH) [16] which 
refines the visual hull geometry by matching colors across the 
images. This results in a tighter fit to the true scene geometry. 

Using an assumption of Lambertian reflectance, voxel coloring 
[14] can be used to test whether a 3D point lies on a surface—
points that project to similar colors in all the images that see 
them are termed photo consistent. IBPH uses this test to refine 
the coarse visual hull produced by IBVH. IBPH iteratively 
evaluates the photo consistency of IBVH surface points by 
moving them a small step in or out with respect to the 
synthesized viewpoint in a process similar to space carving [3]. 
Refinement is continued until the geometry projects to photo-
consistent colors in the images. 

Figure 8 shows that the improved geometric accuracy of the 
photo can make significant improvement to the quality of the 
synthesized view. In the original IBVH-produced image, 
adjacent textures from different cameras appear to be 
misregistered because of the inaccurate geometry; this error is 
reduced in the IBPH image. The depth maps reveal the increased 
geometric detail of the IBPH model that leads to this 
improvement. 

3.3 Motion parallax 
A successful tele-immersion system will make its users feel part 
of a shared virtual environment. The use of low-latency motion 
parallax (quantified in [13]) will provide this. Considering the 
screen as a window onto a virtual world, head movement should 
induce a corresponding view change. To achieve this, we track 
user head position and update the display as appropriate. 

Head position is estimated using an image-based tracker that 
operates by fitting a 3D ellipsoid to the silhouette contour of the 
head in each of the five Coliseum camera views. Since these 
silhouettes are already being used for reconstruction, the 
additional cost of the head tracker is fairly small. 

The tracker operates in linear and nonlinear modes. In the linear 
mode, a 2D ellipse is fit to the head contour in each image 
independently using robust reweighted least squares [5]. These 
head contours are obtained from that part of the foreground 
silhouette above an estimated shoulder height. For stability, this 
is heavily filtered with a time constant of approximately one 

second. The 3D head position is estimated as the point of closest 
intersection of the rays obtained by back-projecting the ellipse 
centers. In the nonlinear mode, we model the head as a 3D 
ellipsoid of fixed size, and use Levenberg-Marquardt 
optimization to minimize an error based on the distance of head 
contour points from the ellipsoid's projection. 

 

 
Figure 8. IBVH (top) versus IBPH (bottom). Texture-mapped 
model (left) and depth map (right). 

The linear mode generates an independent solution for each 
frame, but the standard deviation of its estimates (8 mm) is over 
twice that of the nonlinear approach (3 mm). The nonlinear 
mode, on the other hand, requires a good initial estimate from 
the previous frame. Therefore, we use linear mode to initialize 
when a user first appears or immediately after an unexpected 
failure, and then switch to nonlinear mode for better incremental 
performance. A simple adaptive filter is used to eliminate jitter 
when the user’s head is motionless. 

3.4 Camera Calibration 
Our scene reconstruction requires knowledge of the imaging 
characteristics and pose of each camera. These parameters 
include:  
• Lens distortion, to remove image artifacts produced by 

each camera’s lens (our use of wide-angle lenses 
exacerbates this) 

• Intrinsics, that describe how an image is formed at each 
camera (focal length, aspect ratio, and center of projection) 

• Extrinsics, relating the pose (3D position and orientation) 
of each camera to some global frame of reference 

• Color transforms, to enable color-consistent combination 
of data from multiple cameras in producing a single display 
image 

All of these parameters must be computed before system use 
and, in a deployable system such as ours, any of them may need 
to be recomputed when conditions change. 
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Figure 9 shows the target we use for parameter estimation—a 
10-inch cube with four colored squares on each face (totaling 24 
colors plus black and white). A differential operator detects 
contour edges in luminance versions of the images, and then a 
classifier verifies that a detected face contains four squares. The 
large size and color of the squares make them easier to detect 
and match, while the multiple faces provides both enough color 
for good colorimetric modeling, and opportunity for all of the 
cameras to be acquiring geometric calibration data at the same 
time. 

The face components supply the elements for determining the 
calibration parameters. Lens distortion correction is computed 
by determining the radial polynomial that straightens the target 
faces’ black boundaries [4]. Intrinsic parameters are derived 
from the homographies that rectify the colored squares from 
their projected shapes [18]. Camera extrinsics are estimated in a 
two-stage process that starts with initial adjacent-pair pose 
estimates using a nonlinear variant of a stereo solver [8] applied 
to matched square vertices. These poses are chained together 
and iteratively solved in pairs to minimize error. A bundle 
adjustment minimizes the total calibration error. The 
correspondences are implied when observed faces are matched 
to the target faces, with this matching made more robust by the 
simultaneous visibility of several faces to a single camera. The 
color of each square is known—they resemble those of a 
Macbeth Color Chart—so the colors observed can be used to 
determine each camera’s color transform.  

 
Figure 9. Calibration Target 

3.5 Session management 
Session management is performed through the Hub subsystem, 
built using the Microsoft DirectPlay API. A Hub host process 
for each session runs on a central server and processes connect 
and disconnect events, notifying session members when other 
users join or leave. A new user may connect to any existing 
session, or initiate a new session by starting a new host process. 
Communications among users during a session are peer to peer. 
When a new user connects to a session, the local portion of the 
Hub subsystem determines compatible media types between 
itself and other users, and notifies the local and remote media 
transmission and reception modules. These media modules 
communicate directly using datagram protocols. A multi-stream 
UDP protocol allows coordination of different media-type 
network transmissions. Figure 10 illustrates the dynamic 
structure of a Coliseum application with session management. 

 

3.6 Software framework 
Streaming media applications are difficult to develop: 

1. Digital media processing and services are inherently 
complex and often require orchestration among multiple 
developers. 

2. These applications require simultaneous processing of 
multiple content streams which implies use of advanced 
programming techniques such as multithreading and 
synchronization objects. 

3. To deliver a real-time user experience, optimal 
performance is required on limited computational 
resources, and this necessitates flow control and buffer 
management. 

 Figure 10. Coliseum scalable processing pipeline: On a single 
participant’s Coliseum station, the shaded sub-pipelines are 
added and subtracted from the application as remote participants 
enter and leave the conferencing session. 

In implementing Coliseum, we have created a flexible, multi-
platform, software framework that simplifies the development of 
such streaming media applications. This framework allows an 
application’s processing to be decomposed into a task 
dependency network and automates the parallelism among those 
tasks. 

A dataflow architecture is designed around the travel of data. By 
observing the data lifecycle throughout the application, one may 
define a pipeline of distinct processing stages that can be clearly 
expressed as a directed graph. Our framework addresses all three 
of the difficulties to developing streaming media applications: 
1. A designer decomposes the application into well-defined, 

connected task modules to isolate the complexity of each 
processing stage. 

2. An automatic scheduler analyzes the task decomposition 
and then automates parallelism during execution. 

3. The task scheduler achieves real-time performance via 
automated flow control. 

This design simplifies development at all stages, from 
prototyping to maintenance. A dataflow API hides details of 
multithreading and synchronization and improves modularity, 
extensibility, and reusability. We have implemented the 
framework in C++ on both Windows and Linux platforms. 
Using this framework, we have developed a library of reusable 
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components for the Windows platform (e.g., audio recording 
and playback, video playback, network connectivity). The 
streaming media aspects of Coliseum were built using the 
framework and the reusable components. 

The framework has three main abstractions: Media (data unit), 
Task (computation unit), and Graph (application unit): 
1. Media objects represent time-stamped samples of a digital 

signal, such as audio or video. A memory manager tracks 
the use of Media objects through reference counting and, 
for efficiency, reuses memory whenever possible. The new 
Media abstraction inherits an automatic serialization 
mechanism for writing into pipes, such as a file or network 
buffer. 

2. Task objects represent an operation on Media. The 
abstraction is a black box of processing with input and 
output pins, each specified with supported types of Media. 
The Task completely encapsulates the processing details so 
that the user knows only the functional mapping of input 
pins to output pins. 

3. Graph objects are implicitly defined by the connectivity of 
multiple Tasks. Several commands can be issued to a graph 
including those to start and stop the flow of Media among 
its Tasks. Each Graph has its own scheduler, which orders 
the parallel execution of Tasks. 

This infrastructure provides three distinct benefits: 
1. It supports an incremental development strategy for 

building complex applications—a Graph with a multistage 
pipeline structure can undergo testing of functional subsets 
hooked to real or synthesized data sources and sinks. 

2. The framework allows for dynamic graph construction. 
When stopped, an application can add and remove Tasks, 
then start again with a new graph while keeping the 
unchanged portions intact. We use this technique in the 
large, dynamic graph of Coliseum, adding and removing 
portions of the graph as participants enter and depart 
sessions. 

3. The graph structure supports instrumentation. Keeping a 
functioning Graph intact, a new Task can connect to any of 
its output pins to monitor activity. This ability to “listen” is 
useful for gathering statistics in a performance monitor or 
to effect feedback control in modifying system parameters 
on the fly. 

The alternative to developing our own infrastructure was to use 
an existing system such as Microsoft’s DirectShow. This was 
not acceptable. Aside from being complex to learn and use, and 
dependent on other layers beyond our control (such as COM), 
DirectShow’s use of processes rather than threads makes it poor 
for debugging multi-stream video applications. In addition, its 
lack of a media scheduler means that it employs a philosophy of 
discarding unused work rather than preventing it from being 
done in the first place. This wastes capability in resource-critical 
applications. 

4 PERFORMANCE 
Coliseum is a multi-way, immersive remote collaboration 
system that runs on modest through advanced commodity 
hardware. We have run sessions with up to ten users (all the 
Coliseum systems we have available), and between North 
America and Europe. Success depends on our ability to provide 

videoconference functions with sufficient responsiveness, audio 
and video quality, and perceptual realism to take and hold an 
audience. Our objective of developing this facility to run on 
single personal computers means we have to reach high levels in 
our analysis algorithms as well as in their performance. 
Algorithm success will be judged through observation of users 
at work with the system. Before we reach this point, we must 
ensure the Coliseum is structured to support the frame rates and 
latencies needed for an acceptable user experience. 

We have begun evaluating Coliseum’s performance in terms of 
its computational and networking characteristics. Since we aim 
to support large numbers of participants in simultaneous 
collaboration, we are reviewing the implications of these 
measures on the system’s scalability. 

The following tests were conducted using dual Xeon-based PCs 
with speeds of 2.0, 2.4, 2.8 or 3.06 GHz, each with 1, 2, or 4 GB 
of memory, and running Windows 2000 or XP. Machines shared 
a single 1000SX gigabit Ethernet connected by Cisco Catalyst 
4003 10/100/1000 switches and were typically, two to three 
hops apart. The network was in use at the time for other HP Lab 
activities. Imagery was acquired through Point Grey Dragonfly 
VGA IEEE 1394 (FireWire) cameras operating at 15 Hz. The 
PC used for data collection had dual 2.4 GHz Xeon CPUs and 1 
GB of memory. 

4.1 Latency 
Latency has a major impact on the usability of a communication 
system. There are numerous contributors to overall system 
latency, and we have measured various stages to assemble a 
picture of the delays between actions at one site and 
observations at the other. Coliseum’s latency is composed of: 
• Camera latency: the time between an event occurring and 

the camera making its observations available to a local 
application. 

• Processing Latency: the time it takes after receiving the 
image data from the camera system to process it, create the 
visual hull, render a requested view for a receiver, encode 
this in MPEG4, and then package and ship it to the 
intended recipient via UDP. 

• Network Latency: the time from transmittance of the 
packets from the sender to their receipt by the receiving 
host, typically two switched gigabit network segment hops. 

• Display Latency: the time between packet reception, 
dataset reassembly, MPEG decoding, and return from 
providing the data to the display drivers.  

Measuring camera system latency requires an externally 
observing capture device. We used a field-interlaced digital 
video camera to simultaneously image both an event and the 
display of that event. Our event was the illumination from a 
laser pointer, directed at a Coliseum camera. The laser and the 
camera’s display were simultaneously visible to the observing 
video camera. Manual frame-by-frame analysis of the acquired 
video provided the numbers we sought. We captured several 
such events, and the table below indicates average values. 

We measured camera latency in four situations: 
1. A simple camera driver demonstration program 

(TimeSliceDemo). 
2. A standalone version of Coliseum with no network or 

VRML activity (Carver). 
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3. A Coliseum test of two users with live networking, with 
and without MPEG encoding. 

4. A Coliseum test where the subject is both the sender and 
receiver of the view (a single person loop-back conference) 

Both the Coliseum and Carver measurements reflect round-trip 
frame counts, so the one-way latency is half the observed figure. 
The third test was done to see the effect of MPEG processing on 
latency. 

Figure 11 gives the average video frame count (33 ms each) for 
each test. The observing video camera captured 30 frames per 
second, permitting us to calculate latencies and standard 
deviations. TimeSliceDemo gives us an estimate on the latency 
that lies beyond our control—it is the time it takes the camera to 
acquire the frame and store it in the computer. Of course, this 
includes time for the camera to integrate the frame (on average, 
one half of a frame, or 16 ms, for the event), to charge transfer 
digitize, and ship the frame to the PC (one frame), to buffer and 
DMA the data to memory, and the time for the PC to display the 
frame after it has arrived (observed as perhaps one frame cycle 
of the observing camera). The latter period should be 
discounted. Figure 12 indicates measures of the instrumented 
latency of this same system version and, comparing the 
Coliseum with MPEG user tests to the instrument latency 
figures, we find differences of 38 and 42 milliseconds. This 
difference represents the latency that should be added to 
instrumented error to derive an estimate of end-user experienced 
latency. 

 
System Frames Mean Latency (ms) stdev 

TimeSliceDemo 4.25 142 16.67 
Carver, MPEG 11.63 194 28.05 
Coliseum, no MPEG 14.30  238 32.12 
Coliseum, MPEG 16.30  271 27.28 
Figure 11. Absolute user-perceived latency tests. 

 
Glview Loop-back, subject Latency Difference 

User 233 38 
Bottle 229 42 

Figure 12. Instrument measure of latency (ms). 

We observe that the absolute user-experienced latency in 
Coliseum ranges from 244 to 298 milliseconds. Enabling MPEG 
encoding and decoding increases latency by 32 milliseconds. 

MPEG encoding reduces the amount of data each participant 
sends, but does this at the cost of additional processing. This 
indicates a tradeoff we must consider in our control 
considerations in system balancing. 

There is a 77-millisecond difference between Coliseum and our 
standalone Carver application. This is attributable to the VRML 
viewer and network activity. We will see that network activity 
load is minimal and that the addition is due to the VRML 
control, which currently uses a busy-wait loop for its user 
interface (this will change). 

To determine the contributions to our latency, we manually 
instrumented the code both for the Carver application (non-
networked) and for Coliseum. Timing data were collected at 
various points in the code and recorded with the data set. Each 
data set contained time stamps indicating when the camera 
frame set was first available, image analysis and processing 
time. The receiving host recorded the time to decode and display 
the image. We determined the roundtrip time by adding all the 
timings from both the sender and receiver and subtracting the 
wait time for piggybacking the timing data on outgoing datasets. 
One-way latency is half this value. 

Figure 13 presents data for the Coliseum and Carver tests. 
Carver is the non-networked version of Coliseum with no 
VRML viewer. We tested each application with four different 
subjects – a user, a prerecorded dataset of a user, a 5-gallon 
water bottle, and a prerecorded dataset of the bottle. The bottle 
subject is placed at approximately head height but is stationary 
and several times larger than a user’s head. The prerecorded data 
allow us to exercise the systems without the camera frame rate 
limitation, although memory and disk accesses can similarly 
affect performance. For each subject we give the one-way 
latency, time to generate the image, network delay, display time. 
The table also shows the achieved average frame rate and CPU 
utilization. Note that these data were compiled from a later 
release of the system and therefore should not be directly 
compared to the data for the user-perceived latency results. 

4.2 Networking Requirements  
Though video usually requires considerable network bandwidth, 
Coliseum’s bandwidth needs are quite modest. This is because 
the virtual environment usually occupies the overwhelming 
majority of the area on a Coliseum screen and, being maintained 
locally, is not part of the video stream. MPEG4 further reduces 
the bandwidth requirement. At 15 fps, we measured a typical 
Coliseum video stream to be 616 Kbps. While Coliseum can use 
TCP or UDP as a transport, all tests were conducted with UDP. 

System Subject 
1-way 

Latency 
Image 

Generation Network Display 
Frames/ 

sec 
CPU 

Utilization 
Coliseum User 112 71 3 35 15.00 80% 
 Prerecorded User 151 121 4 40 15.36 83% 
 Bottle 130 95 4 45 15.00 80% 
 Prerecorded Bottle 134 102 3 39 17.68 78% 
Carver User 78 68 NA 10 15.00 75% 
 Prerecorded User 93 77 NA 14 20.99 100% 
 Bottle 65 57 NA 7 15.00 61% 

 Prerecorded Bottle 95 71 NA 21 22.42 100% 
 

Figure 13. Analysis of latency (ms) 
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Using UDP there could be hundreds of Coliseum video streams 
before overloading a gigabit network. 

We measured network latency in our local area network where 
the two participant hosts were two network-switched hops apart. 
The average network latency was 3 milliseconds, so network 
latency contributes about 2% to overall latency. To characterize 
the wide area performance of the system, we measured latency 
on Internet 2 from HP Labs Palo Alto to a site at the University 
of Colorado in Boulder. Our tests showed an average network 
latency of 25 milliseconds. 

4.3 Scalability 

0

2

4

6

8

10

12

14

16

2 3 4 5 6 7 8 9 10
Session Size

Fr
am

es
/s

ec
on

d

0%

20%

40%

60%

80%

100%

C
PU

 U
til

iz
at

io
n

 
Figure 14. Change in fps and cpu utilization for increasing 
Coliseum session sizes. 
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Figure 15. Aggregate bandwidth for different size Coliseum 
sessions. 

Since a major goal of Coliseum is to support video conferencing 
among large groups of people, scalability is an important system 
characteristic. We measured the system’s scalability by 
conducting sessions of increasing population, from 2 to 10 
participants (10 being the number of Coliseum systems on site). 
Figure 14 shows that, as session size increased, system 
performance (fps) decayed due to the increased workload of 
creating images and MPEG streams for the expanding number 
of view renderings required. While frame rate degraded, the 
total aggregate bandwidth sent by one user remained fairly 
constant which means that the system adapts to more users in a 
work conserving manner. Figure 15 shows that bandwidth 
climbed from 616 Kbps to 1178 Kbps as the CPU utilization 
saturated and then leveled off until the session of 6 users. All in 
all, the bandwidth varied 16% over the course of these session 
sizes. At least this much variation is expected over any 

collection of runs, as the bandwidth is sensitive to user 
movement and image size. 

4.4 Performance Summary 
In two-way sessions, we have achieved a rate of 15 frames per 
second, the maximum the FireWire bus can support (five 
cameras at higher rates on FireWire is only possible with image 
size reduction). Our throughput to date indicates that we have 
achieved about a thirty-five-times speedup from algorithmic and 
architectural innovations and a three-times speedup through 
processor evolution, meeting our beginning requirement of a 
hundred-fold speedup. From tests on larger numbers of users, 
we find that the computational complexity of the system 
dominates performance. There are a number of parameters that 
can be used to reduce computation at the expense of visual 
quality, and adjustment of these would allow support of more 
users while maintaining interactive frame rates. The current 
system reduces frame rate but maintains image quality. As the 
numbers of users grows, performance stabilizes, with bandwidth 
served remaining relatively constant. 

Our extensive measurements of Coliseum provides a clear 
breakdown of latency 
• Camera latency: 20% 
• Processing Latency: 50% 
• Network Latency: 2% to 10% (local or wide area) 
• Display Latency: 25% 

These measures will direct our strategies for controlling delay 
and improving system performance for large numbers of users. 

Since Coliseum is a highly compute-intensive application, we 
have the potential to control the end node behavior and therefore 
overall system performance. With facility for graph-level 
performance monitoring (section 3.6) and control parameters for 
adjusting the quality—and therefore speed—of image process-
ing and display computations (section 3.1), we have the tools we 
need for balancing throughput with user needs. While statically 
configured for the evaluations we report here (with an image 
sampling step of 2 pixels, a four-pixel maximum deviation for 
linear approximations, and a hull ray sampling step of 4 pixels), 
these parameters may be adjusted over time and across cameras 
to meet bandwidth and throughput demands. 

5 FUTURE WORK 
There are numerous developments that remain in making 
Coliseum a viable alternative to travel for collaborative remote 
conferencing. Most immediately, we are working at increasing 
frame rate and reducing latency. We are also working on 
algorithms to improve the quality of the video—both the 
textures rendered and the geometry on which they rest. While 
focusing on realistic depiction of people in Coliseum, we know 
that objects and documents also play an important role in 
collaborative interactions, and will be integrating imaged 
artifacts into the shared virtual space. In addition, we are 
working at driving down the system’s cost and getting it into the 
hands of study subjects to aid in our evaluation of user effects. 

With the level of mediation we seek in Coliseum, we introduce 
issues not present in traditional conferencing, such as 
establishing participant layout and maintaining a mutually 
consistent environment. Since we control these issues, we 
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additionally acquire the capability of moving beyond the 
physically realizable, and may consider the advantages of 
unorthodox participant configurations. This gives us the 
opportunity for super realism, such as coercing gaze to match 
intent when the acquired imagery doesn’t provide this, 
highlighting the image of a speaker, incorporating documents 
and other artefacts into the shared world, placing participants 
around artefacts, interpreting gestures, et cetera. 

6 CONCLUSIONS 
Coliseum creates an immersive experience by building dynamic, 
3D user models, embedding them in a shared, virtual space 
through which users are free to move, and generating unique 
views of the space for each user. The views convey reciprocal 
gaze and depth. Interactive performance is achieved through 
streamlined image processing and a software framework that is 
tuned for streaming media applications. This represents the first 
implementation of an immersive collaboration system 
supporting an arbitrary number of users and aimed at three-
dimensional realism. While the possibility of such systems has 
often been discussed in the past, actual implementations have 
been incomplete, operating only one-way, using cartoon avatars, 
or requiring substantial special purpose hardware. Using 
commodity PCs and simple video cameras, we have run fully 
symmetric Coliseum sessions with as many as ten users. Our 
focus now is on structuring our processing and communications 
for best performance, and then getting the system into user’s 
hands for functionality studies. 
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