
Proscenium: A Framework for
Spatio-Temporal Video Editing

Eric P. Bennett
University of North Carolina

at Chapel Hill
bennett@cs.unc.edu

Leonard McMillan
University of North Carolina

at Chapel Hill
mcmillan@cs.unc.edu

ABSTRACT
We present an approach to video editing where movie sequences
are treated as spatio-temporal volumes that can be sheered and
warped under user control. This simple capability enables new
video editing operations that support complex postproduction
modifications, such as object removal and/or changes in camera
motion. Our methods do not rely on complicated and error-prone
image analysis or computer vision methods. Moreover, they
facilitate an editing approach to video that is similar to standard
image-editing tasks. Central to our system is a movie
representation framework called Proscenium that supports
efficient queries and operations on spatio-temporal volumes while
maintaining the original source content. We have adopted a
graph-based lazy-evaluation model in order to support interactive
visualizations, complex data modifications, and efficient
processing of large spatio-temporal volumes.

Categories and Subject Descriptors
H.5.1[Information Interfaces and Presentation]: Multimedia
Information Systems–video. I.3.4[Computer Graphics]:Graphics
Utilities–graphics editors. I.3.6[Computer Graphics]: Method-
ology and Techniques–graphics data structures and data types.
General Terms
Design, Management, Performance

Keywords
Video editing, multimedia framework, feature selection, feature
removal, video layers, video stabilization, special effects.

1. INTRODUCTION
The recent introduction and rapid adoption of consumer digital
video camcorders has redefined the landscape for video editing
tools. We see many parallels between the ongoing evolution of
digital video editing systems and the image editing systems that
arose following the introduction of digital photography. Prior to
digital photography there was relatively little editing of film
prints per se, beyond the crops afforded by scissors and the
occasional zoom provided by photo lab enlargements. Whereas
today, even the most naïve user of digital photography commonly

crops, resizes, adjusts the contrast of, and varies the brightness of
their images. Moreover, sophisticated image processing tools,
such as layer segmentation, clone brushing, and unsharp masking
are increasingly being applied by recreational photographers.

As with digital photography, the first generation video editing
tools facilitate the most simple and common of editing tasks–
specifically, the cutting and pasting of video segments
interspersed with transitions and titles. As the marketplace for
consumer video editing evolves we believe that a new generation
of tools will be developed to provide video manipulation
capabilities ranging from simple touchups to advanced post-
production special effects like those seen in big-budget
Hollywood films.

In this paper we present Proscenium, a new video-editing
paradigm that, rather than processing video clips one frame at a
time, treats the entire video sequence as a spatio-temporal volume
as shown in Figure 1. We have developed a new set of user-
guided video editing tools that enable complex manipulations of
entire video sequences using simple and intuitive user
interactions. Furthermore, we have developed a movie
representation framework that supports efficient queries and
operations on spatio-temporal volumes while always maintaining
the original fidelity of the source content. We have adopted a
graph-based deferred execution model in order to support
interactive manipulation and processing across these volumes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MM’03, November 2-8, 2003, Berkeley, California, USA.
Copyright 2003 ACM 1-58113-722-2/03/0011…$5.00.

Figure 1: Screenshot from our application depicting an 8 second video
segment as a spatio-temporal volume. Our editing system provides a user
interface for sheering, modifying, restoring, and resheering such volumes.

2. PREVIOUS WORK
Most modern digital video editing systems are adaptations of
classical analog video and film editing systems. Their primary
function is to cut raw footage into a series of clips, and then
assemble these clips along some timeline into a produced video.
The introduction of digital processing capability and content has
enabled a wide range of new inter-sequence transition effects as
well as a rich set of intra-frame processing capabilities to improve
image contrast and color-balance. However, the process of
editing, assembling, and producing a video still follows a similar
pipeline to the classical approaches pioneered for analog video.

Systems like Adobe Premiere [3], Apple Final Cut Pro [5], and
Avid Media Composer [7] all adopt the classical film editing
approach. They support the assembly of short clips by allowing
cuts, cropping, editing, and rearranging of short video segments.
Alternatively, Adobe After Effects [1] looks at making
modifications primarily on only short pieces of footage. Our
spatio-temporal video-editing framework allows both kinds of
edits, but it is particularly well suited for manipulating and
combining elements from many short video segments. We also do
away with the idea of a timeline, replacing it with a more visual
3D video rendering.

The idea of filter graphs has been previously used in many forms
in the area of multimedia processing [19]. Conceptually, the idea
is that individual processing components can be ordered and
arranged so that data flows from the input of a filter graph to the
output; passing through the interconnected components that lie
along that path. Each component (often called a filter) may
modify data before passing it along to the next filter. The data
flows in the form of buffers that comprise the pixel data of one or
more frames. Each filter is only responsible to process data in a
standardized manner without knowledge of exactly what filters
are directly connected to it. This allows them to be easily
interconnected in any order, similar to the Decorator design
pattern specification [13].

Apple’s QuickTime [6] framework and Microsoft’s DirectShow
[17] framework implement multimedia filter graphs for video and
audio. Specifically, DirectShow treats video data as a stream that
flows in buffers of entire frames of pixels from the graph’s input
to the graph’s output. The Berkeley Continuous Media Toolkit
[16] also implements a powerful filter graph in the form of a
scripting protocol. Proscenium also features filter graphs, but
extends the idea to include bi-directional data flow. Proscenium is
also designed to be dynamically configurable for ease in
combining and manipulating filters as specified by the user.

There have also been notable efforts towards providing 3D editing
systems with interfaces analogous to standard 2D image editors.
Ideas from Adobe Photoshop [2], a commercially popular image-
editing tool, are, in fact, frequently applied to both 3D and video
applications because of its ease of use, flexibility, and rich set of
tools. Recently systems have been proposed to extend the same
rich image-editing environment to 3D volumetric [8] and point-
based models [23]. We also provide a 3D extension to the
classical image-editing approach, but our work focuses on a
particular class of 3D data called spatio-temporal volumes, which
is our working abstraction for video sequences.

The concept of displaying video data as a three dimensional
volume was explored by Fels et al [12] and extended by Klein

et al [14][15]. Their work demonstrated the wide range of
visualizations that could be achieved by allowing slices to be
taken out of videos when treated as spatio-temporal volumes.
Their primary image manipulation tool was a “cutting plane”.
Proscenium expands the range of processing that can be applied to
spatio-temporal volumes, in particular we provide the ability to
distort or warp the data volume in order to facilitate object
alignment and editing operations.

Video stabilization is a key component in Proscenium’s editing
process. Buhler et al [10] demonstrated how foreground and
background stabilization could be used to generate novel videos
with refined camera and object motions. Their work relied on
extensive off line analysis for tracking features and combining
images from a source sequence. Proscenium, on the other hand,
depends on user provided guidance to aid in the stabilization
process. This helps to overcome many of the problems associated
with automatic techniques such as when features are occluded, or
if the source images lack sufficient detail for robust tracking.
Furthermore, our user aided approach allows us to separately
stabilize different visual elements of the scene. Thus, through a
series of successive edits we can modify each element.

Recent work in video matting has also influenced the design of
our system. Chaung et al [11] presented a combination of user-
guided and automatic techniques for constructing garbage mattes
and trimaps. Their method relied on the use of optical flow
methods for maintaining temporal coherence. If the optical flow
did not yield a sufficient result, new user specified mattes could
be substituted at any frame. They also discuss their method of
background estimation by choosing the nearest temporally aligned
pixel to replace a foreground pixel that avoids many parallax
issues. Proscenium implements similar functionality, but relies on
user-guided stabilization followed by a statistical analysis of the
aligned region to establish background and foreground mattes.
Proscenium uses a very similar background extraction technique
in its edge-filling filter, but integrates it with stabilization for non-
static camera applications.

The overall workflow of Proscenium was influenced by the layer
concepts of Wang and Adelson [21]. They developed the notion
that general planes of motion in a video should be edited
independently. Proscenium edits use video stabilization to make
one particular layer static through time, and therefore easier to
modify, before changes are applied.

3. SPATIO-TEMPORAL VIDEO EDITING
The goal of spatio-temporal video editing is to enable new
interactive tools for manipulating video with similar flexibility
and ease of use as current 2D image editing applications. This is
accomplished using all of the frames of the original video footage.
Achieving interactive response over such large volumes of source
material requires special design considerations and support
infrastructure.

Making precise image edits to videos is complicated by the fact
that users are very sensitive to temporal artifacts even as small as
a single pixel. Maintaining temporal consistency is therefore a
common problem in video editing. If temporal consistency is not
properly handled when dealing with object removal or
background replacement, the viewer can become aware of “ghost-
like” outlines in areas where the video was modified. A video
editing system must therefore support operators that are aware of

both their local spatial (intra-frame) and temporal (inter-frame)
contexts. This further motivates our requirement that the whole
video “volume” should be processed simultaneously rather a
frame at a time.

In standard image editing systems, graphic artists are provided
with a refined set of tools and techniques that are both subtle and
powerful. Most of these tools are very straightforward, and do not
rely on complex analysis algorithms or otherwise rely on a great
deal of automation. The real power of editing tools comes from
the human in the loop who chooses where and when tools are
applied as well as resolves ambiguities when necessary. However,
the straightforward application of traditional image-editing
techniques to video sequences would be tedious, particularly if
applied one frame at a time. To the extent that the frames are
similar, it is conceivable that edits applied to one frame could be
propagated to the remainder, thus, better leveraging the editing
efforts. Therefore, in order to allow a more traditional editing
approach, we provide tools to locally align specific image regions,
thus making them more similar to each other before editing
begins. In order to support local alignments it is often necessary
to significantly skew and distort nearby frames of the video
volume. However, this global modification of each frame allows
us to keep the area being edited static through time. This permits
edits to be applied simultaneously to many frames.

We also adopt a strategy of dynamically combining simple
editing tools to form more complex tools. Many video editing
packages provide specialized tools to accomplish very specific
tasks. Learning the subtleties of these tools can be time-
consuming. Spatio-temporal video editing proposes a more
flexible and interactive solution with fewer base level tools. In
addition, we provide the capability for combining a series of
editing actions to compose more advanced functions. These
resulting tools are neither fully automated nor completely
ignorant, but allow the artist the maximum of flexibility while
having the computer provide feedback to the user and handle the
busy work.

In the interest of flexibility, we place no constraints on the type of
source footage that can be edited. Certain edits are greatly
simplified when the source footage has specific characteristics
(such as extracting a background from a static camera shot, or
stabilizing a segment with a fixed in-frame subject, or
constructing a panorama from a rotating camera). However, our
simple tools for manipulating spatio-temporal volumes can be
composed and then reapplied to accomplish all of these tasks,
even when the source material is far from ideal.

The large volumes of data required to process each edit when
working with dynamically warped uncompressed video can be
overwhelming, so lazy evaluation (also referred to as deferred
execution) is used at every step of our editing process. Until the
changes are committed, all apparent modifications made to a
video do not modify the source materials. Instead, each operation
is represented as filter in a process graph. Visualization of editing
operations executes a series of filter calls that map each output
pixel to the set of source pixels that determine its value and
perform the desired combinations. Since it is expensive to
maintain copies of the original and modified volumes, lazy
evaluation and judicious caching are employed to provide
interactivity. This need to maintain accurate mapping functions at
each step of the process necessitates accurate sampling and

reconstruction in our spatio-temporal video editing framework.
We provide support for source image interpolation and filtering
that is transparent to the end user.

3.1 Data Representation
Each source video segment in our system is conceptually
represented as a three dimensional array addressed in spatial
dimensions by u and v and in time by frame number, t. We
provide both discrete and continuous access to the spatio-temporal
volume through separate methods. Discrete addressing is akin to
standard array access, whereas continuous access allows for
fractional addressing and implies interpolation. The quality of
interpolation is a property of the volume, and can be established
by either specific (Nearest neighbor, Bilinear, Bicubic, etc.) or
generic (Low quality, High quality, etc.) hints. Source image
filtering (minifying access) occurs at a higher level, and can make
use of either access method.
We also provide the capability to dynamically re-map the
parameterization of the video model using a general 2D projective
transform defined for each value of t. These mapping functions
allow a wide range of spatial modifications including frame-to
frame translations, rotations, scales, skews, and any combination
of these. The ability to dynamically re-map the frame-to-frame
parameterizations enables our capability to align local regions of
the volume while leaving the source images in place. These
projective transformations are invertible, thus allowing the
mapping from either source to destination or vice versa. In this
paper we refer to application volume queries using parameters
(x,y,t) and source video parameters as (u,v,t), where u and v are
projective functions of x, y, indexed by t as described.
Currently all spatio-temporal volumes use a common color space
for storing pixels: unsigned bytes with RGBA (0-255) values.
This is encapsulated in a Color class. The alpha component serves
as either a traditional blending element [18] or as a pixel-specific
auxiliary variable for Boolean or more complex operations.
Importantly, (0,0,0,0) is reserved as being an “empty” value,
meaning that nothing was found at a requested pixel.

3.2 Filter Graphs
The underlying objects that make lazy evaluation possible are the
filters in the filter graph. In the Proscenium system, each of these
filters is referred to as a PFilter.

Pointer

PFilter

Application

PFilter

PFilter PFilter

D
ata Flow

Figure 2: Diagram illustrating the interconnections of PFilters in a
Proscenium filter graph. Each filter is only aware of those filters that
comprise its inputs.

Proscenium’s filter graph is specifically tuned for lazy evaluation.
Whereas many implementations [6][17] treat pixel data as large
buffers, Proscenium never processes with anything larger than a
single pixel at a time. Proscenium’s graph is fully bi-directional,
instead of being a traditional directed acyclic graph that forces
data to flow from the input of the system to the output. Bi-
directionality allows the application at the output of the graph to
request only the pixels it needs for interactive display. The filter
graph is also designed to insert and remove PFilters at run-time
based on user interaction without rebuilding the entire graph.
All actions begin with a request from the application that it wants
a pixel at some (x,y,t). This request is sent to the output of the
filter graph and not the input, which decides what actions to take.
The most basic action is to say nothing was found and return an
“empty” pixel. It can also return a constant, such as a background
color. Finally, it can request pixel data from any of the filters at
its inputs, modify that color, and return it to the requestor. This
ordering of events is crucial to achieve the functionality in the
filters described later. There is the added performance bonus that
the final PFilter (the first queried) may be able to return a value
without querying the other PFilters, because it foregoes the
trouble of having to traverse through the entire graph.
All requests are initiated with a coordinate using either a discrete
or continuous address as previously described. By asking for pixel
color values one at a time, there is no need to define an internal
sampling standard, because all sampling is handled at the
application level.

3.3 PFilter Specification
Bi-directional data flow across PFilters is enforced by having
each fulfill the requirements of a basic interface. They must be
able to describe their size in width, height, and number of frames.
They must internally know if they are a discrete or continuous
filter. Most importantly, they must be able to handle reading and
writing of individual pixels, which is done by defining input
filters and filter functions. If not overridden the defaults return
the values obtained from their input PFilters.

The pixelWidth and pixelHeight are the measurements in pixels
of the viewable area of each frame. Proscenium currently
assumes that these are constant across all frames of a sequence, so
smaller images must be padded with “empty” pixels. The number

of frames (numFrames) is a discrete quantity that makes the
assumption that the frame rate is constant, but variable rates can
be added through transitional PFilters.

Pixel values are queried with the discrete getActualPixel(int x,y,z)
function or the continuous getPixel(float x,y,z). These functions
only know the requested pixel coordinate and return the color at
that pixel; nothing else. Unless these functions are overridden
they pass along the query to the private functions
runDiscreteFilter(int x,y,z) and runContinuousFilter(float x,y,z)
after providing bounds checking. These are the most commonly
overridden functions when creating a new filter. If a PFilter is
defined as discrete (by bool isDiscrete) a call to the continuous
getPixel will use tri-linear interpolation to resolve the color.
Inside each PFilter is an array called inputFilters[] which
associates a PFilter pointer with an integer index. The filter graph
is constructed by setting these values. By convention, the PFilter
associated with the number zero is its main data path, carrying the
video output of the filters below, while the others are designed for
specific purposes for each filter type. For data flow reasons
PFilters only know what PFilters are their inputs and do not know
their outputs. Many PFilters may share the output of a PFilter,
but only one PFilter can be assigned to each input of a PFilter.

4. SPATIO-TEMPORAL OPERATORS
The best way to understand how spatio-temporal video editing
works is by looking at its supporting components. These example
PFilters represent only a small subset of the types of filters that
have been designed. However, interesting permutations are
possible with just a few.
Most PFilters can be categorized into a few useful groups. First
are those PFilters that alter the color value of the pixel that was
passed into it through its input, such as for color or contrast
adjustment. Next are those filters that pull their value from pixels
that may not be the pixel directly aligned with it in its input
PFilter. The PBackground filter described in this section performs
an analysis of all of the pixels in the movie that share a particular
x and y coordinate. Finally are those filters that alter the overall
shape of the individual frames as they pass through the PFilter,
such as with video stabilization and video framing.

5

4

1 6

3

2

1

PFrame

Application

PMovie

PPZR

Pointer

Query

Figure 3: The flow diagram above illustrates the flow of pixel queries
through an example filter graph. Data requests by the application
traverse the graph until the holder of the data is reached, and then the
results are passed back up the chain, possibly being modified along the
way. This graph stabilizes a video and then crops its edges, creating
the effect of a new camera motion by combining filters.

Member Functions:
 Color getPixel(float x, y, z);
 Color getActualPixel(int x, y, z);

 Color runDiscreteFilter(int x, y, z);
 Color runContinuousFilter(float x, y, z);

 void setActualPixel(int x, y, z, Color c);
Properties:
 int pixelWidth, pixelHeight, numFrames;
 bool isDiscrete;

inputFilters[256]
Figure 4: Each PFilter object supports multiple input ports and a single
output. By combining the results from different input filters, video
sequences can be modulated and combined. The methods shown
comprise the standard interface for all PFilters.

PFilter

0 1 2 3 256

Out

…

4.1 Simple Color Correction
To demonstrate a simple discrete filter, PCorrect adjusts the blue
values of its input pixel and sends it to the output with the red,
green, and alpha unchanged. The isDiscrete variable is set to true
so that all processing will pass through the runDiscreteFilter
virtual function.
class PCorrect : public PFilter
{
public:
 PCorrect() { isDiscrete = true; blueAdjust = 20; }

 Color runDiscreteFilter(int x, int y, int z)
 {
 Color inColor = inputFilters[0]->getActualPixel(x,y,z);
 int tempBlue = inColor.B + blueAdjust;
 if(tempBlue > 255)tempBlue = 255;
 if(tempBlue < 0)tempBlue = 0;
 return Color::FromArgb(inColor.A,
 inColor.R,inColor.G,tempBlue);
 }
 int blueAdjust = 0;
};

This PFilter has no internal storage, so its changes must be
propagated down to its input. In the process, the color correction
must be run in reverse, so that when it progresses through the
filter in the forward direction at a later time, it will be filtered, and
the desired color will result again. This is easily accomplished by
overriding another function:
void setActualPixel(int x, int y, int z, Color newColor)
{
 int tempBlue = newColor.B - blueAdjust;
 if(tempBlue > 255) tempBlue = 255;
 if(tempBlue < 0) tempBlue = 0;
 Color alteredColor = Color::FromArgb(newColor.A, newColor.R,
 newColor.G, tempBlue);
 inputFilters[0]->setActualPixel(x, y, z, alteredColor);
}

4.2 Video Framing
With PFrame, the true extent of a movie can be hidden by
manipulating the PFilter’s pixelWidth, pixelHeight, and
numFrames properties. This PFilter serves two purposes. First, it
acts as a zoom. Videos are sampled during interaction, meaning
that removing data on the edges allows greater detail to be shown
for the remaining portion. If the PFrame is left in place it will
continue to act as a crop, but if it is removed all of the occluded
data on the sides is still present.
This effect is achieved by substituting new values for pixelWidth,
pixelHeight, and numFrames. The filter then becomes
responsible for handling the fact that the origin may no longer be
at (0,0,0). Finally, it must reverse this operation when a pixel is
written so that the write it transmits to its input PFilter will be the
original coordinate and not the offset coordinate.
To simplify this example, only the x-dimension will be framed,
but the same technique applies to all three dimensions. myOffset
is the horizontal distance from the origin that the frame begins,
and myWidth is its horizontal size.
Color runDiscreteFilter(int x, int y, int z)
{
 if ((x >= 0) && (x < myWidth))
 return inputFilters[0] > getActualPixel(x + offX, y, z);
 else return Color::FromArgb(0,0,0,0); // Empty Pixel
}

void setActualPixel(int x, int y, int z, Color newColor)
{ inputFilters[0]->setActualPixel(x + offX, y, z, newColor); }

The use of the “empty” pixel is important, as it indicates the
presence of an area outside the video. Bounds checking is
explicitly done here because it is crucial to make sure occluded
pixels cannot pass through.

4.3 Background Restoration
The PBackground filter returns a color based on a function of the
matching (x,y) coordinates in every frame. Therefore, if this
function were solved for every (x,y) pair in the video a new image
of the background would result. In this example, the median of
each color channel combined into a new color is the statistic used
for estimating the background color. Alternatively, background
filters are also possible that select the modes of the color
component distributions. Furthermore, in this background filter
implementation, those pixels with an alpha below some threshold
are not considered.
The runDiscreteFilter function disregards the z value, and takes
the mode of the pixels with the matching (x,y) and returns that
color. No setActualPixel method is provided because this output
is not directly related to any frame’s input pixel.
Color runDiscreteFilter(int x, int y, int z)
{
 Color tempColor, finalColor;
 for(int i=0;i<inputFilters[0]->numFrames;i++) {
 tempColor = inputFilters[0]->getActualPixel(x,y,i);
 if(tempColor.A == 255)
 Sort the Red, Green, and Blue values into buckets
 }
 return Color::FromArgb(255, Median of Red, Blue, and Green);
}

Another background restoration filter has been designed called
the edge-filling filter which returns the nearest opaque pixel that
is temporally aligned to a transparent pixel. This technique is
particularly useful in videos with translating or rotating cameras
when attempting to build a panorama.

4.4 Caching
Performing the operations of a large number of interconnected
PFilters can become very compute intensive. At some point
caching becomes a convenient method to speed up operations.
The PCache class is a configurable cache that complements our
model of lazy evaluation. When a PCache is added onto the end
of a filter graph it does not immediately cache all the pixels.
Instead, it waits to be queried about a pixel before retrieving its
value from its input PFilter. This accelerates subsequent accesses.
A cache exists as a block of RGBA or monochrome pixels exactly
the same size as the PCache’s input video. Each frame is
separately stored as a bitmap, and pointers to each frame are
stored in an array for quick access. This allows frames to be
deleted or inserted without regenerating the entire data structure.
The cache is initially filled with an arbitrary reserved value,
which is referred to as the “unsolved” color. When the cache
receives a getActualPixel it checks its personal data structure, and
upon finding the “unsolved” value at that coordinate, it queries its
input. It takes the return of that function, updates its own data
structure, and then returns it back up the filter graph. A “locked”
PCache is one that will never perform a lookup even upon finding
the “unsolved” color.
Our PCache functions have the following policies. First is that
changes made by setActualPixel affect the data in the PCache, but
are not propagated to its input terminals. Therefore, when a
PCache receives an incoming setActualPixel request, its internal
data structure is modified so that subsequent calls to the PCache
return the new value. There is also a difficulty in alerting PCaches
that they are invalidated by upstream changes to their inputs.
Because all requests for pixel data flow in the opposite direction,
there is no direct way for a PFilter to notify later PCaches that its

data changed. They will either go on unaware of the
inconsistency or rely on the application to invalidate a portion of
the PCache back to its unsolved state.
The PCaches have usefulness outside of accelerating the main
data path in the filter graph. Of the example filters so far, none
have used more than the first entry in inputFilters[]. PCaches
placed on one of the other PFilter inputs can be an efficient way
for that PFilter to cache reoccurring operations. For example, the
PBackground filter returns the same value for each frame with the
only variation depending on the (x,y) value requested. Therefore,
by creating a locked PCache with only one frame, the solved pixel
values can be stored in an efficient external data structure. This
PCache then also acts as a complete image of the background.

4.5 Video Files
In order to process video, the filter graph must at some point
contain the raw source video footage. The raw data is provided as
yet another PFilter derived class. The source data class, called
PMovie, is derived from the PCache class. It is essentially an
unchanged PCache that defaults to being in the “locked” state,
and therefore causes no input data lookups. It also adds member
functions to load source video and bitmaps files into the frames.
For output to video files on disk, the mechanism actually is
another PFilter called PAVIOut. It is placed on the end of the
filter graph where the application would normally make its
queries so that it uses the same data that the user sees on screen.
This filter configures a PCache, and then initiates calls to query
all pixels in the volume. This structure is then fed into the video
encoder, which, in turn, produces the output file.

4.6 Video Stabilization
The ability to stabilize an object is a key tool in the spatio-
temporal video editing repertoire. Almost all editing operations
use stabilization in one way or another. In order to visualize what
stabilization does, first imagine the spatio-temporal video cube.
Suppose this video has an object in it translating from right to left.
In order to stabilize this object, each frame must be shifted by an
increasingly larger amount to the right in order to have the object
fall in the same general pixel area. This results in sheering the
volume. However, the moving object now falls in a static
rectangular box in the volume, making it easier to select or edit.
Video stabilization is not limited to translating objects. By
applying projective transforms it is also possible to remove the
effects of scaling, rotation, shearing and changes in planar
perspective. This can cause the entire volume to take on many
interesting shapes, but the area under stabilization will appear to
remain constant through time.
In a normal workflow, an object is first stabilized. If needed,
subsequent “fine-tuning” stabilizations can be applied, and their
transforms composed. It is then possible to edit or modify the
stabilized objects throughout the warped portion of the volume.
Finally the stabilization can be removed. These edits can then be
propagated to the original source material. This allows what
would otherwise be very complex edits over transforming objects
to be done simultaneously over many frames.
Imagine having a moving object in a scene that you want to re-
color. You could stabilize the object so that the orientation and
shape of the object did not change. Then you could use a

“temporal paintbrush” which works like a normal paint brush in a
2D paint application but makes changes to many adjacent frames.
Because the stabilized area is consistent in all frames
(independent of its shape and orientation in the original footage)
any edit would immediately have temporal continuity when the
stabilization was removed.
The Proscenium video stabilization system involves two major
components: a mechanism for determining the transform matrices
of the frames in relation to each other and a filter supporting bi-
directional data flow in the filter graph for editing and viewing of
the video in its stabilized form.
For Proscenium, the stabilizations are performed using projective
transforms, which are established via user-defined inter-frame
correspondences. It is not necessary to specify a correspondence
in every frame of a video segment. Instead, the user can select
corresponding points at appropriate intervals in the video, and
those points are linearly interpolated in the intervening frames.
When only a single correspondence is specified, frame-to-frame
translations are computed. When two correspondences are
provided a similitude transformation is found (a translation and
rotation with a global scale). With three corresponding points
affine transformations of the images are computed. Four
correspondences specify a unique projective transformation.
When more than 4 correspondences are provided the closest
projective transformation (in the least squares sense) is computed.
All of the coefficients for the transforms can be found using linear
methods as described in [22]. We solve for these systems in real-
time using Gauss-Jordan Elimination [20]. By convention, the
first frame of a movie will remain stationary, with all other frames
generating their correspondences in relation to that frame.
Once the correspondence matrices have been calculated, pixel
access must be considered. As mentioned previously, Proscenium
is designed to only know a frame’s width and its height, and it
handles non-conforming frames by padding their sides.
Unfortunately, frames that have been rotated will have extra area
filled in with “empty” pixels. Two problems result from this
method: more memory space is needed and pixel data loss can
result from rotation and scaling. This would affect Proscenium’s
ability to remove stabilization at a later time and maintain fidelity.
The problems are solved through the use of a PFilter called PPZR
(Proscenium Pan/Zoom/Rotate). By having all changes affected
by a PFilter, there is no need to store the new data state, and
pixels can be read from and written to the underlying video data
with on-the-fly transformations. The setActualPixel and
getActualPixel functions handle this work transparently.

Figure 5: Proscenium supports arbitrary projective warps and sheers of
the volume. This facility enables objects moving within the field of view
to be stabilized.

Figure 6: Two original frames from a 3 second DV resolution video clip.

The transform matrices are loaded into the PPZR, and it then
solves to find the coordinates of the four corners of each frame.
These values determine the rectangular bounding box of the new
volume. Proscenium believes the upper-left hand corner of each
frame is at (0,0), so offsets are implemented to reorient PPZR’s
transformed coordinate space. The pixelWidth and pixelHeight of
the PFilter are substituted with the values of the new extents.
PPZR handles getActualPixel requests by returning discrete pixel
data without attempting interpolation or blending. It receives a
discrete pixel coordinate which it multiplies by the inverse
transform matrix for that frame, and then rounds to an integer
value and returns that color or “empty” if outside the volume.
setActualPixel is implemented in a similar fashion. It takes the
target coordinate and multiplies it by the inverse matrix and then
sets the pixel color in the source material. However, this often
does not result in the expected effect. This is because whereas
each discrete coordinate input to getActualPixel corresponds to
just a single pixel, setActualPixel can have a one-to-many, one-to-
one, or even a one-to-none relationship. This often occurs when
scaling is involved in a stabilization. There are many ways around
the problem of changing the color of an entire area (the example
marks an entire area to “empty”). One such way involves taking
the corners of the bounding polygon in the transformed
coordinates and changing them back to the original coordinates.
Filling the new polygon in the source material will then be sure to
change all pixels that fall in the transformed boundary.

5. RESULTS
We next demonstrate the Proscenium framework and the concepts
of spatio-temporal video editing by creating a sample video
editing application with the following features:

1. View and play a spatio-temporal volume with slices removed
2. Dynamically build a filter graph of the PFilters so far described
3. Dynamically remove filters from the filter graph
4. Perform video stabilization (PPZR) with a graphical interface

To demonstrate this functionality, we show the steps involved in
the removal of a Frisbee being thrown in a video clip where the
camera loosely tracks its path from right to left. Removal of
shadows or other objects can be done by repeating this technique.

The included timing data demonstrates the system’s interactivity,
but it is influenced by visualization complexity. The times are
from a sample run calculated on a uniprocessor Pentium IV at 2.4
GHz with 1 GB of RAM using a 120 frame 720x480 video. The
majority of computation is the interface calling getActualPixel()
for graphical display data forcing lazy evaluation. Thus, the more
pixels in the interactive volume texture, the longer the delay. To
account for this relation, timing data for requesting display pixels
is measured in time per-pixel, and calculations altering the data
set or rendering final output are given as total processing time.

T:

X: Y:
Figure 7: Sheered volume after Frisbee has been stabilized. Three
visualizations of the volume are shown above. The top-left image shows
the sheered volume at a given time. The right image shows a fixed column
through time and the bottom image shows a fixed scan line where the
Frisbee’s path has been stabilized.

The difficulty of removing the Frisbee from the video is two-fold
because neither the Frisbee nor the background is stationary over
the course of the video. Each element will be stabilized
separately and edits will be made in each stabilized state. Once
the edits are complete, stabilization will be removed, but the edits
will remain.
The first step involves stabilizing the video around the Frisbee.
Initially loading the video takes 3.3s, and display is .92µs/pixel.
Once the Frisbee is mid-air, correspondence points are placed on
it in every few frames. Because the Frisbee does not make any
sudden shifts in its velocity or position, the linear interpolation of
the stabilization engine is sufficient with only a few specified
correspondence points. The transform matrices for each frame are
calculated (.01s) and applied through the PPZR filter. The
display of the wider view takes 1.53µs/pixel.

The next step involves selecting a liberal axis-aligned bounding
box around the Frisbee. The box also has a time dimension in
addition to width and height, which allows selection of a subset of
all the frames. This bounding box is executed by adding a
PFrame with the extents of the bounding box. Now display takes
1.77µs/pixel due to the added PFilter. A separate operation then
sets all of the pixels in the source footage that lie in the PFrame to
the “empty” color value(.08s). This cuts a hole in the video,
erasing all pixels in the PFrame. At this point, all temporary
filters are removed and the display is redrawn at .92µs/pixel.

Figure 8: A subsequent sheering of the volume with the background
stabilized is shown above. A constant time slice is shown in the upper-
left, a fixed column is shown in the upper-right, and the bottom is a fixed
scan line through the aligned volume.

Figure 9: A frame from the original sequence is shown on the left and the
corresponding frame after removal of the Frisbee is on the right.
The desired effect is to fill in the background in areas where the
pixels of the Frisbee were removed. The PBackground filter
would seem ideal for this situation, but the background is not
static over time. The solution is to stabilize the background.
Correspondence points are placed on a similar background object
in a number of frames. The PPZR filter takes these transforms
and redisplays the data in a new stabilized form at 1.53µs/pixel.

The PBackground filter is now ready to operate. However,
because it is a PFilter, it must be removed in order to go back to
the original video. Thus, the holes must be permanently filled. In
order to do this, the original data will be queried for which pixels
are “empty”, and those pixels will be filled with the appropriate
PBackground data from the transformed space (64.7s).
Once the changes are made, all of the PFilters are removed,
restoring the original camera motion. The resulting video looks
similar to the original, but with the Frisbee removed without loss
of temporal coherency. The video can be exported (29.2s) having
been maintained at DV resolution throughout the editing process.
The total RAM used in the edit was the original uncompressed
movie size plus 25-50% of garbage collected scratch space.
The most important result is that the user is in complete control of
the editing at every stage of the process. This alleviates the need
for special computer vision techniques and scene dependent
heuristics by returning control to the artist. Our system provides
tools to enable visualizations and complex edits that would not
otherwise be possible. The computer takes out the busy work by
applying changes to many frames, and leaves the artist in control.

6. FUTURE WORK
Our current implementation has several limitations. In particular,
our editing approach implicitly treats each object being stabilized
as a planar surface using projective transforms. This is a common
assumption of most layer-based models, but it cannot accurately
align arbitrary 3D shapes. Future work could include complex
alignment tools such as morphing or plane-plus-parallax warping.

Our current implementation assumes a standard uniprocessor PC.
However, we are optimistic that our lazy-evaluation model can be
adapted to parallel and distributed implementations because of its
loosely coupled implementation. Processing could also be done
using the graphics processing unit on a graphics accelerator to
increase the speed of calculation of videos.

7. CONCLUSIONS
We have presented Proscenium, a filter-graph framework for
processing video as a spatio-temporal volume. Treating videos as
spatio-temporal volumes enables new editing capabilities, which
we have demonstrated by implementing a prototype video editing
system. By providing the user with the capability to sheer,

modify, restore, and resheer these volumes, we are able to provide
an intuitive image-editing-like user interface that allows tools to
be applied throughout the volume while interacting with only a
small visible portion of the data. Our filter-graph framework
allows operations on large volumes with minimal memory
footprint.

8. REFERENCES
[1] Adobe After Effects 5.5. Adobe Systems Inc.http://www.adobe.com.

[2] Adobe Photoshop 7.0. Adobe Systems Inc. http://www.adobe.com.

[3] Adobe Premiere 6.5. Adobe Systems Inc. http://www.adobe.com.

[4] Alias|Wavefront Maya 4.5. Alias|Wavefront. http://www.alias.com.

[5] Apple Final Cut Pro 3. Apple Computer, Inc, http://www.apple.com.

[6] Apple QuickTime 6. Apple Computer, Inc, http://www.apple.com.

[7] Avid Media Composer. Avid Technology, Inc, http://www.avid.com.

[8] AVS/Express 6.0, Advanced Visual Systems, Inc,
http://www.avs.com.

[9] Bolles, R.C., Baker, H.H., and Marimont, D.H. Epipolar-Plane Image
Analysis: An Approach to Determining Structure from Motion.
International Journal of Computer Vision, 1, 1, pp. 7-55, 1987.

[10] Buehler, C., Bosse, M., and McMillan, L., Non-Metric Image-Based
Rendering for Video Stabilization. In Proceedings of CVPR 2001,
pp. 609-614, 2001.

[11] Chuang, Y.-Y., Agarwala, A., Curless, B., Salesin, D.H., and
Szeliski, R. Video Matting of Complex Scenes. In Proceedings of
SIGGRAPH 2001, ACM Press, pp. 243-248, 2001.

[12] Fels, S., Lee, E., and Mase, K. Techniques for Interactive Video
Cubism. In Proceedings of ACM Multimedia 2000, pp. 368–370,
2000.

[13] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns:
Elements of Reusable Object-Oriented Software, Addison Wesley,
Boston, pp. 175-184, 1995.

[14] Klein, A., Sloan, P.P., Finkelstein, A., and Cohen, M.F. Video
Cubism, Microsoft Research Technical Report MSR-TR-2001-45,
2001.

[15] Klein, A., Sloan, P.P., Finkelstein, A., and Cohen, M.F. Stylized
Video Cubes, ACM SIGGRAPH Symposium on Computer
Animation 2002, July, 2002.

[16] Mayer-Patel, K. and Rowe, L.A. Design and Performance of the
Berkeley Continuous Media Toolkit, Multimedia Computing and
Networking 1997, Proc. SPIE 3020, pp. 194-206, 1997.

[17] Microsoft DirectShow (DirectX 9.0). Microsoft Corporation,
http://www.microsoft.com/directx.

[18] Porter, T. and Duff T. Compositing Digital Images. Computer
Graphics, In Proceedings of SIGGRAPH 1994, ACM Press, pp. 253-
259, 1994.

[19] Pratt, W.K., Developing Visual Applications; XIL: An Imaging
Foundation Library, Prentice Hall, ISBN 0-13-461948-X, 1997.

[20] Press, W.H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.
Numerical Recipes in C: The Art of Scientific Computing.
Cambridge University Press, Cambridge, pp. 36-41, 1992.

[21] Wang, J.Y.A. and Adelson, E.A. Layered Representation for Motion
Analysis. In Proceedings of CVPR93, pp. 361-366, 1993.

[22] Wolberg, G. Digital Image Warping, Wiley-IEEE Computer Society
Press, ISBN: 0-8186-8944-7, 1995.

[23] Zwicker, M., Pfister, H., Van Baar, J., and Gross, M. Pointshop 3D:
An Interactive System for Point-Based Surface Editing. In
Proceedings of SIGGRAPH, 2002.

