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ABSTRACT 
We present an approach to video editing where movie sequences 
are treated as spatio-temporal volumes that can be sheered and 
warped under user control. This simple capability enables new 
video editing operations that support complex postproduction 
modifications, such as object removal and/or changes in camera 
motion. Our methods do not rely on complicated and error-prone 
image analysis or computer vision methods. Moreover, they 
facilitate an editing approach to video that is similar to standard 
image-editing tasks. Central to our system is a movie 
representation framework called Proscenium that supports 
efficient queries and operations on spatio-temporal volumes while 
maintaining the original source content. We have adopted a 
graph-based lazy-evaluation model in order to support interactive 
visualizations, complex data modifications, and efficient 
processing of large spatio-temporal volumes. 

Categories and Subject Descriptors 
H.5.1[Information Interfaces and Presentation]: Multimedia 
Information Systems–video. I.3.4[Computer Graphics]:Graphics 
Utilities–graphics editors. I.3.6[Computer Graphics]: Method-
ology and Techniques–graphics data structures and data types.  
General Terms 
Design, Management, Performance 

Keywords 
Video editing, multimedia framework, feature selection, feature 
removal, video layers, video stabilization, special effects. 

1. INTRODUCTION 
The recent introduction and rapid adoption of consumer digital 
video camcorders has redefined the landscape for video editing 
tools. We see many parallels between the ongoing evolution of 
digital video editing systems and the image editing systems that 
arose following the introduction of digital photography. Prior to 
digital photography there was relatively little editing of film 
prints per se, beyond the crops afforded by scissors and the 
occasional zoom provided by photo lab enlargements. Whereas 
today, even the most naïve user of digital photography commonly 

crops, resizes, adjusts the contrast of, and varies the brightness of 
their images. Moreover, sophisticated image processing tools, 
such as layer segmentation, clone brushing, and unsharp masking 
are increasingly being applied by recreational photographers. 

As with digital photography, the first generation video editing 
tools facilitate the most simple and common of editing tasks– 
specifically, the cutting and pasting of video segments 
interspersed with transitions and titles. As the marketplace for 
consumer video editing evolves we believe that a new generation 
of tools will be developed to provide video manipulation 
capabilities ranging from simple touchups to advanced post-
production special effects like those seen in big-budget 
Hollywood films.  

In this paper we present Proscenium, a new video-editing 
paradigm that, rather than processing video clips one frame at a 
time, treats the entire video sequence as a spatio-temporal volume 
as shown in Figure 1. We have developed a new set of user-
guided video editing tools that enable complex manipulations of 
entire video sequences using simple and intuitive user 
interactions. Furthermore, we have developed a movie 
representation framework that supports efficient queries and 
operations on spatio-temporal volumes while always maintaining 
the original fidelity of the source content. We have adopted a 
graph-based deferred execution model in order to support 
interactive manipulation and processing across these volumes. 
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Figure 1: Screenshot from our application depicting an 8 second video 
segment as a spatio-temporal volume.  Our editing system provides a user 
interface for sheering, modifying, restoring, and resheering such volumes. 



2. PREVIOUS WORK 
Most modern digital video editing systems are adaptations of 
classical analog video and film editing systems. Their primary 
function is to cut raw footage into a series of clips, and then 
assemble these clips along some timeline into a produced video. 
The introduction of digital processing capability and content has 
enabled a wide range of new inter-sequence transition effects as 
well as a rich set of intra-frame processing capabilities to improve 
image contrast and color-balance. However, the process of 
editing, assembling, and producing a video still follows a similar 
pipeline to the classical approaches pioneered for analog video. 

Systems like Adobe Premiere [3], Apple Final Cut Pro [5], and 
Avid Media Composer [7] all adopt the classical film editing 
approach. They support the assembly of short clips by allowing 
cuts, cropping, editing, and rearranging of short video segments.  
Alternatively, Adobe After Effects [1] looks at making 
modifications primarily on only short pieces of footage.  Our 
spatio-temporal video-editing framework allows both kinds of 
edits, but it is particularly well suited for manipulating and 
combining elements from many short video segments. We also do 
away with the idea of a timeline, replacing it with a more visual 
3D video rendering. 

The idea of filter graphs has been previously used in many forms 
in the area of multimedia processing [19]. Conceptually, the idea 
is that individual processing components can be ordered and 
arranged so that data flows from the input of a filter graph to the 
output; passing through the interconnected components that lie 
along that path. Each component (often called a filter) may 
modify data before passing it along to the next filter. The data 
flows in the form of buffers that comprise the pixel data of one or 
more frames.  Each filter is only responsible to process data in a 
standardized manner without knowledge of exactly what filters 
are directly connected to it.  This allows them to be easily 
interconnected in any order, similar to the Decorator design 
pattern specification [13]. 

Apple’s QuickTime [6] framework and Microsoft’s DirectShow 
[17] framework implement multimedia filter graphs for video and 
audio.  Specifically, DirectShow treats video data as a stream that 
flows in buffers of entire frames of pixels from the graph’s input 
to the graph’s output.  The Berkeley Continuous Media Toolkit 
[16] also implements a powerful filter graph in the form of a 
scripting protocol.  Proscenium also features filter graphs, but 
extends the idea to include bi-directional data flow. Proscenium is 
also designed to be dynamically configurable for ease in 
combining and manipulating filters as specified by the user. 

There have also been notable efforts towards providing 3D editing 
systems with interfaces analogous to standard 2D image editors.  
Ideas from Adobe Photoshop [2], a commercially popular image-
editing tool, are, in fact, frequently applied to both 3D and video 
applications because of its ease of use, flexibility, and rich set of 
tools. Recently systems have been proposed to extend the same 
rich image-editing environment to 3D volumetric [8] and point-
based models [23]. We also provide a 3D extension to the 
classical image-editing approach, but our work focuses on a 
particular class of 3D data called spatio-temporal volumes, which 
is our working abstraction for video sequences. 

The concept of displaying video data as a three dimensional 
volume was explored by Fels et al [12] and extended by Klein 

et al [14][15].  Their work demonstrated the wide range of 
visualizations that could be achieved by allowing slices to be 
taken out of videos when treated as spatio-temporal volumes.  
Their primary image manipulation tool was a “cutting plane”. 
Proscenium expands the range of processing that can be applied to 
spatio-temporal volumes, in particular we provide the ability to 
distort or warp the data volume in order to facilitate object 
alignment and editing operations.  

Video stabilization is a key component in Proscenium’s editing 
process.  Buhler et al [10] demonstrated how foreground and 
background stabilization could be used to generate novel videos 
with refined camera and object motions.  Their work relied on 
extensive off line analysis for tracking features and combining 
images from a source sequence. Proscenium, on the other hand, 
depends on user provided guidance to aid in the stabilization 
process. This helps to overcome many of the problems associated 
with automatic techniques such as when features are occluded, or 
if the source images lack sufficient detail for robust tracking. 
Furthermore, our user aided approach allows us to separately 
stabilize different visual elements of the scene. Thus, through a 
series of successive edits we can modify each element.  

Recent work in video matting has also influenced the design of 
our system. Chaung et al [11] presented a combination of user-
guided and automatic techniques for constructing garbage mattes 
and trimaps. Their method relied on the use of optical flow 
methods for maintaining temporal coherence.  If the optical flow 
did not yield a sufficient result, new user specified mattes could 
be substituted at any frame. They also discuss their method of 
background estimation by choosing the nearest temporally aligned 
pixel to replace a foreground pixel that avoids many parallax 
issues. Proscenium implements similar functionality, but relies on 
user-guided stabilization followed by a statistical analysis of the 
aligned region to establish background and foreground mattes.  
Proscenium uses a very similar background extraction technique 
in its edge-filling filter, but integrates it with stabilization for non-
static camera applications. 

The overall workflow of Proscenium was influenced by the layer 
concepts of Wang and Adelson [21].  They developed the notion 
that general planes of motion in a video should be edited 
independently.  Proscenium edits use video stabilization to make 
one particular layer static through time, and therefore easier to 
modify, before changes are applied. 

3. SPATIO-TEMPORAL VIDEO EDITING 
The goal of spatio-temporal video editing is to enable new 
interactive tools  for manipulating video with similar flexibility 
and ease of use as current 2D image editing applications. This is 
accomplished using all of the frames of the original video footage. 
Achieving interactive response over such large volumes of source 
material requires special design considerations and support 
infrastructure.  

Making precise image edits to videos is complicated by the fact 
that users are very sensitive to temporal artifacts even as small as 
a single pixel. Maintaining temporal consistency is therefore a 
common problem in video editing. If temporal consistency is not 
properly handled when dealing with object removal or 
background replacement, the viewer can become aware of “ghost-
like” outlines in areas where the video was modified. A video 
editing system must therefore support operators that are aware of 



both their local spatial (intra-frame) and temporal (inter-frame) 
contexts. This further motivates our requirement that the whole 
video “volume” should be processed simultaneously rather a 
frame at a time. 

In standard image editing systems, graphic artists are provided 
with a refined set of tools and techniques that are both subtle and 
powerful. Most of these tools are very straightforward, and do not 
rely on complex analysis algorithms or otherwise rely on a great 
deal of automation. The real power of editing tools comes from 
the human in the loop who chooses where and when tools are 
applied as well as resolves ambiguities when necessary. However, 
the straightforward application of traditional image-editing 
techniques to video sequences would be tedious, particularly if 
applied one frame at a time. To the extent that the frames are 
similar, it is conceivable that edits applied to one frame could be 
propagated to the remainder, thus, better leveraging the editing 
efforts. Therefore, in order to allow a more traditional editing 
approach, we provide tools to locally align specific image regions, 
thus making them more similar to each other before editing 
begins. In order to support local alignments it is often necessary 
to significantly skew and distort nearby frames of the video 
volume. However, this global modification of each frame allows 
us to keep the area being edited static through time. This permits 
edits to be applied simultaneously to many frames. 

We also adopt a strategy of dynamically combining simple 
editing tools to form more complex tools. Many video editing 
packages provide specialized tools to accomplish very specific 
tasks. Learning the subtleties of these tools can be time-
consuming. Spatio-temporal video editing proposes a more 
flexible and interactive solution with fewer base level tools. In 
addition, we provide the capability for combining a series of 
editing actions to compose more advanced functions. These 
resulting tools are neither fully automated nor completely 
ignorant, but allow the artist the maximum of flexibility while 
having the computer provide feedback to the user and handle the 
busy work. 

In the interest of flexibility, we place no constraints on the type of 
source footage that can be edited. Certain edits are greatly 
simplified when the source footage has specific characteristics 
(such as extracting a background from a static camera shot, or 
stabilizing a segment with a fixed in-frame subject, or 
constructing a panorama from a rotating camera). However, our 
simple tools for manipulating spatio-temporal volumes can be 
composed and then reapplied to accomplish all of these tasks, 
even when the source material is far from ideal. 

The large volumes of data required to process each edit when 
working with dynamically warped uncompressed video can be 
overwhelming, so lazy evaluation (also referred to as deferred 
execution) is used at every step of our editing process. Until the 
changes are committed, all apparent modifications made to a 
video do not modify the source materials. Instead, each operation 
is represented as filter in a process graph. Visualization of editing 
operations executes a series of filter calls that map each output 
pixel to the set of source pixels that determine its value and 
perform the desired combinations. Since it is expensive to 
maintain copies of the original and modified volumes, lazy 
evaluation and judicious caching are employed to provide 
interactivity. This need to maintain accurate mapping functions at 
each step of the process necessitates accurate sampling and 

reconstruction in our spatio-temporal video editing framework. 
We provide support for source image interpolation and filtering 
that is transparent to the end user. 

3.1 Data Representation 
Each source video segment in our system is conceptually 
represented as a three dimensional array addressed in spatial 
dimensions by u and v and in time by frame number, t. We 
provide both discrete and continuous access to the spatio-temporal 
volume through separate methods. Discrete addressing is akin to 
standard array access, whereas continuous access allows for 
fractional addressing and implies interpolation. The quality of 
interpolation is a property of the volume, and can be established 
by either specific (Nearest neighbor, Bilinear, Bicubic, etc.) or 
generic (Low quality, High quality, etc.) hints. Source image 
filtering (minifying access) occurs at a higher level, and can make 
use of either access method. 
We also provide the capability to dynamically re-map the 
parameterization of the video model using a general 2D projective 
transform defined for each value of t. These mapping functions 
allow a wide range of spatial modifications including frame-to 
frame translations, rotations, scales, skews, and any combination 
of these. The ability to dynamically re-map the frame-to-frame 
parameterizations enables our capability to align local regions of 
the volume while leaving the source images in place. These 
projective transformations are invertible, thus allowing the 
mapping from either source to destination or vice versa. In this 
paper we refer to application volume queries using parameters  
(x,y,t) and source video parameters as (u,v,t), where u and v are 
projective functions of x, y, indexed by t as described. 
Currently all spatio-temporal volumes use a common color space 
for storing pixels: unsigned bytes with RGBA (0-255) values. 
This is encapsulated in a Color class. The alpha component serves 
as either a traditional blending element [18] or as a pixel-specific 
auxiliary variable for Boolean or more complex operations. 
Importantly, (0,0,0,0) is reserved as being an “empty” value, 
meaning that nothing was found at a requested pixel.  

3.2 Filter Graphs 
The underlying objects that make lazy evaluation possible are the 
filters in the filter graph.  In the Proscenium system, each of these 
filters is referred to as a PFilter. 
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Figure 2: Diagram illustrating the interconnections of PFilters in a 
Proscenium filter graph. Each filter is only aware of those filters that 
comprise its inputs. 



Proscenium’s filter graph is specifically tuned for lazy evaluation.  
Whereas many implementations [6][17] treat pixel data as large 
buffers, Proscenium never processes with anything larger than a 
single pixel at a time.  Proscenium’s graph is fully bi-directional, 
instead of being a traditional directed acyclic graph that forces 
data to flow from the input of the system to the output.  Bi-
directionality allows the application at the output of the graph to 
request only the pixels it needs for interactive display.  The filter 
graph is also designed to insert and remove PFilters at run-time 
based on user interaction without rebuilding the entire graph.  
All actions begin with a request from the application that it wants 
a pixel at some (x,y,t).  This request is sent to the output of the 
filter graph and not the input, which decides what actions to take.  
The most basic action is to say nothing was found and return an 
“empty” pixel.  It can also return a constant, such as a background 
color.  Finally, it can request pixel data from any of the filters at 
its inputs, modify that color, and return it to the requestor.  This 
ordering of events is crucial to achieve the functionality in the 
filters described later.  There is the added performance bonus that 
the final PFilter (the first queried) may be able to return a value 
without querying the other PFilters, because it foregoes the 
trouble of having to traverse through the entire graph. 
All requests are initiated with a coordinate using either a discrete 
or continuous address as previously described. By asking for pixel 
color values one at a time, there is no need to define an internal 
sampling standard, because all sampling is handled at the 
application level. 

3.3 PFilter Specification 
Bi-directional data flow across PFilters is enforced by having 
each fulfill the requirements of a basic interface.  They must be 
able to describe their size in width, height, and number of frames.  
They must internally know if they are a discrete or continuous 
filter.  Most importantly, they must be able to handle reading and 
writing of individual pixels, which is done by defining input 
filters and filter functions.  If not overridden the defaults return 
the values obtained from their input PFilters.  

The pixelWidth and pixelHeight are the measurements in pixels 
of the viewable area of each frame.  Proscenium currently 
assumes that these are constant across all frames of a sequence, so 
smaller images must be padded with “empty” pixels. The number 

of frames (numFrames) is a discrete quantity that makes the 
assumption that the frame rate is constant, but variable rates can 
be added through transitional PFilters.  

Pixel values are queried with the discrete getActualPixel(int x,y,z) 
function or the continuous getPixel(float x,y,z).  These functions 
only know the requested pixel coordinate and return the color at 
that pixel; nothing else.  Unless these functions are overridden 
they pass along the query to the private functions 
runDiscreteFilter(int x,y,z) and runContinuousFilter(float x,y,z) 
after providing bounds checking.  These are the most commonly 
overridden functions when creating a new filter.  If a PFilter is 
defined as discrete (by bool isDiscrete) a call to the continuous 
getPixel will use tri-linear interpolation to resolve the color. 
Inside each PFilter is an array called inputFilters[] which 
associates a PFilter pointer with an integer index.  The filter graph 
is constructed by setting these values.  By convention, the PFilter 
associated with the number zero is its main data path, carrying the 
video output of the filters below, while the others are designed for 
specific purposes for each filter type.  For data flow reasons 
PFilters only know what PFilters are their inputs and do not know 
their outputs.  Many PFilters may share the output of a PFilter, 
but only one PFilter can be assigned to each input of a PFilter. 

4. SPATIO-TEMPORAL OPERATORS 
The best way to understand how spatio-temporal video editing 
works is by looking at its supporting components. These example 
PFilters represent only a small subset of the types of filters that 
have been designed. However, interesting permutations are 
possible with just a few.  
Most PFilters can be categorized into a few useful groups. First 
are those PFilters that alter the color value of the pixel that was 
passed into it through its input, such as for color or contrast 
adjustment. Next are those filters that pull their value from pixels 
that may not be the pixel directly aligned with it in its input 
PFilter. The PBackground filter described in this section performs 
an analysis of all of the pixels in the movie that share a particular 
x and y coordinate.  Finally are those filters that alter the overall 
shape of the individual frames as they pass through the PFilter, 
such as with video stabilization and video framing. 
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Figure 3: The flow diagram above illustrates the flow of pixel queries 
through an example filter graph.  Data requests by the application 
traverse the graph until the holder of the data is reached, and then the 
results are passed back up the chain, possibly being modified along the 
way.  This graph stabilizes a video and then crops its edges, creating 
the effect of a new camera motion by combining filters. 

Member Functions: 
      Color getPixel(float x, y, z); 
      Color getActualPixel(int x, y, z); 

      Color runDiscreteFilter(int x, y, z); 
      Color runContinuousFilter(float x, y, z); 

      void setActualPixel(int x, y, z, Color c); 
Properties: 
      int pixelWidth, pixelHeight, numFrames; 
      bool isDiscrete; 

inputFilters[256] 
Figure 4: Each PFilter object supports multiple input ports and a single 
output.  By combining the results from different input filters, video 
sequences can be modulated and combined.  The methods shown 
comprise the standard interface for all PFilters. 

PFilter 

0 1 2 3 256

Out 

… 



4.1 Simple Color Correction 
To demonstrate a simple discrete filter, PCorrect adjusts the blue 
values of its input pixel and sends it to the output with the red, 
green, and alpha unchanged.  The isDiscrete variable is set to true 
so that all processing will pass through the runDiscreteFilter 
virtual function. 
class PCorrect : public PFilter 
{ 
public: 
 PCorrect() { isDiscrete = true; blueAdjust = 20; } 
  
 Color runDiscreteFilter(int x, int y, int z) 
 { 
  Color inColor = inputFilters[0]->getActualPixel(x,y,z); 
  int tempBlue = inColor.B + blueAdjust; 
  if(tempBlue > 255)tempBlue = 255; 
  if(tempBlue < 0)tempBlue = 0; 
  return Color::FromArgb(inColor.A, 
   inColor.R,inColor.G,tempBlue); 
 } 
 int blueAdjust = 0; 
}; 
 
This PFilter has no internal storage, so its changes must be 
propagated down to its input.  In the process, the color correction 
must be run in reverse, so that when it progresses through the 
filter in the forward direction at a later time, it will be filtered, and 
the desired color will result again.  This is easily accomplished by 
overriding another function: 
void setActualPixel(int x, int y, int z, Color newColor) 
{ 
 int tempBlue = newColor.B - blueAdjust; 
 if(tempBlue > 255) tempBlue = 255; 
 if(tempBlue < 0) tempBlue = 0; 
 Color alteredColor = Color::FromArgb(newColor.A, newColor.R, 
  newColor.G, tempBlue); 
 inputFilters[0]->setActualPixel(x, y, z, alteredColor); 
} 
 

4.2 Video Framing 
With PFrame, the true extent of a movie can be hidden by 
manipulating the PFilter’s pixelWidth, pixelHeight, and 
numFrames properties.  This PFilter serves two purposes.  First, it 
acts as a zoom. Videos are sampled during interaction, meaning 
that removing data on the edges allows greater detail to be shown 
for the remaining portion.  If the PFrame is left in place it will 
continue to act as a crop, but if it is removed all of the occluded 
data on the sides is still present. 
This effect is achieved by substituting new values for pixelWidth, 
pixelHeight, and numFrames.  The filter then becomes 
responsible for handling the fact that the origin may no longer be 
at (0,0,0).  Finally, it must reverse this operation when a pixel is 
written so that the write it transmits to its input PFilter will be the 
original coordinate and not the offset coordinate. 
To simplify this example, only the x-dimension will be framed, 
but the same technique applies to all three dimensions. myOffset 
is the horizontal distance from the origin that the frame begins, 
and myWidth is its horizontal size. 
Color runDiscreteFilter(int x, int y, int z) 
{ 
 if ((x >= 0) && (x < myWidth))  
  return inputFilters[0] > getActualPixel(x + offX, y, z); 
 else return Color::FromArgb(0,0,0,0); // Empty Pixel 
} 
 
void setActualPixel(int x, int y, int z, Color newColor) 
{ inputFilters[0]->setActualPixel(x + offX, y, z, newColor); } 
 
The use of the “empty” pixel is important, as it indicates the 
presence of an area outside the video.  Bounds checking is 
explicitly done here because it is crucial to make sure occluded 
pixels cannot pass through. 

4.3 Background Restoration 
The PBackground filter returns a color based on a function of the 
matching (x,y) coordinates in every frame.  Therefore, if this 
function were solved for every (x,y) pair in the video a new image 
of the background would result.  In this example, the median of 
each color channel combined into a new color is the statistic used 
for estimating the background color. Alternatively, background 
filters are also possible that select the modes of the color 
component distributions. Furthermore, in this background filter 
implementation, those pixels with an alpha below some threshold 
are not considered. 
The runDiscreteFilter function disregards the z value, and takes 
the mode of the pixels with the matching (x,y) and returns that 
color.  No setActualPixel method is provided because this output 
is not directly related to any frame’s input pixel. 
Color runDiscreteFilter(int x, int y, int z) 
{ 
 Color tempColor, finalColor; 
 for(int i=0;i<inputFilters[0]->numFrames;i++) { 
  tempColor = inputFilters[0]->getActualPixel(x,y,i); 
  if(tempColor.A == 255) 
        Sort the Red, Green, and Blue values into buckets 
 } 
 return Color::FromArgb(255, Median of Red, Blue, and Green); 
}  
 
Another background restoration filter has been designed called 
the edge-filling filter which returns the nearest opaque pixel that 
is temporally aligned to a transparent pixel.  This technique is 
particularly useful in videos with translating or rotating cameras 
when attempting to build a panorama. 

4.4 Caching 
Performing the operations of a large number of interconnected 
PFilters can become very compute intensive.  At some point 
caching becomes a convenient method to speed up operations.  
The PCache class is a configurable cache that complements our 
model of lazy evaluation.  When a PCache is added onto the end 
of a filter graph it does not immediately cache all the pixels.  
Instead, it waits to be queried about a pixel before retrieving its 
value from its input PFilter.  This accelerates subsequent accesses. 
A cache exists as a block of RGBA or monochrome pixels exactly 
the same size as the PCache’s input video.  Each frame is 
separately stored as a bitmap, and pointers to each frame are 
stored in an array for quick access.  This allows frames to be 
deleted or inserted without regenerating the entire data structure.  
The cache is initially filled with an arbitrary reserved value, 
which is referred to as the “unsolved” color.  When the cache 
receives a getActualPixel it checks its personal data structure, and 
upon finding the “unsolved” value at that coordinate, it queries its 
input.  It takes the return of that function, updates its own data 
structure, and then returns it back up the filter graph.   A “locked” 
PCache is one that will never perform a lookup even upon finding 
the “unsolved” color. 
Our PCache functions have the following policies.  First is that 
changes made by setActualPixel affect the data in the PCache, but 
are not propagated to its input terminals. Therefore, when a 
PCache receives an incoming setActualPixel request, its internal 
data structure is modified so that subsequent calls to the PCache 
return the new value. There is also a difficulty in alerting PCaches 
that they are invalidated by upstream changes to their inputs. 
Because all requests for pixel data flow in the opposite direction, 
there is no direct way for a PFilter to notify later PCaches that its 



data changed.  They will either go on unaware of the 
inconsistency or rely on the application to invalidate a portion of 
the PCache back to its unsolved state. 
The PCaches have usefulness outside of accelerating the main 
data path in the filter graph.  Of the example filters so far, none 
have used more than the first entry in inputFilters[].  PCaches 
placed on one of the other PFilter inputs can be an efficient way 
for that PFilter to cache reoccurring operations.  For example, the 
PBackground filter returns the same value for each frame with the 
only variation depending on the (x,y) value requested.  Therefore, 
by creating a locked PCache with only one frame, the solved pixel 
values can be stored in an efficient external data structure. This 
PCache then also acts as a complete image of the background. 

4.5 Video Files 
In order to process video, the filter graph must at some point 
contain the raw source video footage.  The raw data is provided as 
yet another PFilter derived class.  The source data class, called 
PMovie, is derived from the PCache class.  It is essentially an 
unchanged PCache that defaults to being in the “locked” state, 
and therefore causes no input data lookups.  It also adds member 
functions to load source video and bitmaps files into the frames. 
For output to video files on disk, the mechanism actually is 
another PFilter called PAVIOut.  It is placed on the end of the 
filter graph where the application would normally make its 
queries so that it uses the same data that the user sees on screen. 
This filter configures a PCache, and then initiates calls to query 
all pixels in the volume.  This structure is then fed into the video 
encoder, which, in turn, produces the output file. 

4.6 Video Stabilization 
The ability to stabilize an object is a key tool in the spatio-
temporal video editing repertoire.  Almost all editing operations 
use stabilization in one way or another.  In order to visualize what 
stabilization does, first imagine the spatio-temporal video cube.  
Suppose this video has an object in it translating from right to left.  
In order to stabilize this object, each frame must be shifted by an 
increasingly larger amount to the right in order to have the object 
fall in the same general pixel area.  This results in sheering the 
volume.  However, the moving object now falls in a static 
rectangular box in the volume, making it easier to select or edit.  
Video stabilization is not limited to translating objects.  By 
applying projective transforms it is also possible to remove the 
effects of scaling, rotation, shearing and changes in planar 
perspective.  This can cause the entire volume to take on many 
interesting shapes, but the area under stabilization will appear to 
remain constant through time.  
In a normal workflow, an object is first stabilized.  If needed, 
subsequent “fine-tuning” stabilizations can be applied, and their 
transforms composed.  It is then possible to edit or modify the 
stabilized objects throughout the warped portion of the volume.  
Finally the stabilization can be removed.  These edits can then be 
propagated to the original source material.  This allows what 
would otherwise be very complex edits over transforming objects 
to be done simultaneously over many frames. 
Imagine having a moving object in a scene that you want to re-
color.  You could stabilize the object so that the orientation and 
shape of the object did not change.  Then you could use a 

“temporal paintbrush” which works like a normal paint brush in a 
2D paint application but makes changes to many adjacent frames.  
Because the stabilized area is consistent in all frames 
(independent of its shape and orientation in the original footage) 
any edit would immediately have temporal continuity when the 
stabilization was removed. 
The Proscenium video stabilization system involves two major 
components: a mechanism for determining the transform matrices 
of the frames in relation to each other and a filter supporting bi-
directional data flow in the filter graph for editing and viewing of 
the video in its stabilized form. 
For Proscenium, the stabilizations are performed using projective 
transforms, which are established via user-defined inter-frame 
correspondences. It is not necessary to specify a correspondence 
in every frame of a video segment. Instead, the user can select 
corresponding points at appropriate intervals in the video, and 
those points are linearly interpolated in the intervening frames. 
When only a single correspondence is specified, frame-to-frame 
translations are computed. When two correspondences are 
provided a similitude transformation is found (a translation and 
rotation with a global scale). With three corresponding points 
affine transformations of the images are computed. Four 
correspondences specify a unique projective transformation. 
When more than 4 correspondences are provided the closest 
projective transformation (in the least squares sense) is computed. 
All of the coefficients for the transforms can be found using linear 
methods as described in [22]. We solve for these systems in real-
time using Gauss-Jordan Elimination [20].  By convention, the 
first frame of a movie will remain stationary, with all other frames 
generating their correspondences in relation to that frame. 
Once the correspondence matrices have been calculated, pixel 
access must be considered.  As mentioned previously, Proscenium 
is designed to only know a frame’s width and its height, and it 
handles non-conforming frames by padding their sides.  
Unfortunately, frames that have been rotated will have extra area 
filled in with “empty” pixels.  Two problems result from this 
method: more memory space is needed and pixel data loss can 
result from rotation and scaling.  This would affect Proscenium’s 
ability to remove stabilization at a later time and maintain fidelity. 
The problems are solved through the use of a PFilter called PPZR 
(Proscenium Pan/Zoom/Rotate).  By having all changes affected 
by a PFilter, there is no need to store the new data state, and 
pixels can be read from and written to the underlying video data 
with on-the-fly transformations.  The setActualPixel and 
getActualPixel functions handle this work transparently.   

 
Figure 5: Proscenium supports arbitrary projective warps and sheers of 
the volume.  This facility enables objects moving within the field of view 
to be stabilized. 



  
Figure 6: Two original frames from a 3 second DV resolution video clip.  

The transform matrices are loaded into the PPZR, and it then 
solves to find the coordinates of the four corners of each frame.  
These values determine the rectangular bounding box of the new 
volume.  Proscenium believes the upper-left hand corner of each 
frame is at (0,0), so offsets are implemented to reorient PPZR’s 
transformed coordinate space.  The pixelWidth and pixelHeight of 
the PFilter are substituted with the values of the new extents. 
PPZR handles getActualPixel requests by returning discrete pixel 
data without attempting interpolation or blending. It receives a 
discrete pixel coordinate which it multiplies by the inverse 
transform matrix for that frame, and then rounds to an integer 
value and returns that color or “empty” if outside the volume.   
setActualPixel is implemented in a similar fashion.  It takes the 
target coordinate and multiplies it by the inverse matrix and then 
sets the pixel color in the source material.  However, this often 
does not result in the expected effect.  This is because whereas 
each discrete coordinate input to getActualPixel corresponds to 
just a single pixel, setActualPixel can have a one-to-many, one-to-
one, or even a one-to-none relationship.  This often occurs when 
scaling is involved in a stabilization. There are many ways around 
the problem of changing the color of an entire area (the example 
marks an entire area to “empty”).  One such way involves taking 
the corners of the bounding polygon in the transformed 
coordinates and changing them back to the original coordinates.  
Filling the new polygon in the source material will then be sure to 
change all pixels that fall in the transformed boundary. 

5. RESULTS 
We next demonstrate the Proscenium framework and the concepts 
of spatio-temporal video editing by creating a sample video 
editing application with the following features: 

1. View and play a spatio-temporal volume with slices removed 
2. Dynamically build a filter graph of the PFilters so far described 
3. Dynamically remove filters from the filter graph 
4. Perform video stabilization (PPZR) with a graphical interface 

To demonstrate this functionality, we show the steps involved in 
the removal of a Frisbee being thrown in a video clip where the 
camera loosely tracks its path from right to left. Removal of 
shadows or other objects can be done by repeating this technique. 

The included timing data demonstrates the system’s interactivity, 
but it is influenced by visualization complexity. The times are 
from a sample run calculated on a uniprocessor Pentium IV at 2.4 
GHz with 1 GB of RAM using a 120 frame 720x480 video.  The 
majority of computation is the interface calling getActualPixel() 
for graphical display data forcing lazy evaluation.  Thus, the more 
pixels in the interactive volume texture, the longer the delay.  To 
account for this relation, timing data for requesting display pixels 
is measured in time per-pixel, and calculations altering the data 
set or rendering final output are given as total processing time.  

T:     
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Figure 7: Sheered volume after Frisbee has been stabilized. Three 
visualizations of the volume are shown above.  The top-left image shows 
the sheered volume at a given time.  The right image shows a fixed column 
through time and the bottom image shows a fixed scan line where the 
Frisbee’s path has been stabilized. 

The difficulty of removing the Frisbee from the video is two-fold 
because neither the Frisbee nor the background is stationary over 
the course of the video.  Each element will be stabilized 
separately and edits will be made in each stabilized state.  Once 
the edits are complete, stabilization will be removed, but the edits 
will remain. 
The first step involves stabilizing the video around the Frisbee.  
Initially loading the video takes 3.3s, and display is .92µs/pixel. 
Once the Frisbee is mid-air, correspondence points are placed on 
it in every few frames.  Because the Frisbee does not make any 
sudden shifts in its velocity or position, the linear interpolation of 
the stabilization engine is sufficient with only a few specified 
correspondence points.  The transform matrices for each frame are 
calculated (.01s) and applied through the PPZR filter.  The 
display of the wider view takes 1.53µs/pixel. 

The next step involves selecting a liberal axis-aligned bounding 
box around the Frisbee. The box also has a time dimension in 
addition to width and height, which allows selection of a subset of 
all the frames.  This bounding box is executed by adding a 
PFrame with the extents of the bounding box.  Now display takes 
1.77µs/pixel due to the added PFilter.  A separate operation then 
sets all of the pixels in the source footage that lie in the PFrame to 
the “empty” color value(.08s).  This cuts a hole in the video, 
erasing all pixels in the PFrame.  At this point, all temporary 
filters are removed and the display is redrawn at .92µs/pixel. 

   

 
Figure 8: A subsequent sheering of the volume with the background 
stabilized is shown above.  A constant time slice is shown in the upper-
left, a fixed column is shown in the upper-right, and the bottom is a fixed 
scan line through the aligned volume. 



  
Figure 9: A frame from the original sequence is shown on the left and the 
corresponding frame after removal of the Frisbee is on the right. 
The desired effect is to fill in the background in areas where the 
pixels of the Frisbee were removed.  The PBackground filter 
would seem ideal for this situation, but the background is not 
static over time. The solution is to stabilize the background. 
Correspondence points are placed on a similar background object 
in a number of frames.  The PPZR filter takes these transforms 
and redisplays the data in a new stabilized form at 1.53µs/pixel. 

The PBackground filter is now ready to operate.  However, 
because it is a PFilter, it must be removed in order to go back to 
the original video.  Thus, the holes must be permanently filled.  In 
order to do this, the original data will be queried for which pixels 
are “empty”, and those pixels will be filled with the appropriate 
PBackground data from the transformed space (64.7s).   
Once the changes are made, all of the PFilters are removed, 
restoring the original camera motion.  The resulting video looks 
similar to the original, but with the Frisbee removed without loss 
of temporal coherency.  The video can be exported (29.2s) having 
been maintained at DV resolution throughout the editing process. 
The total RAM used in the edit was the original uncompressed 
movie size plus 25-50% of garbage collected scratch space. 
The most important result is that the user is in complete control of 
the editing at every stage of the process.  This alleviates the need 
for special computer vision techniques and scene dependent 
heuristics by returning control to the artist. Our system provides  
tools to enable visualizations and complex edits that would not 
otherwise be possible. The computer takes out the busy work by 
applying changes to many frames, and leaves the artist in control. 

6. FUTURE WORK 
Our current implementation has several limitations. In particular, 
our editing approach implicitly treats each object being stabilized 
as a planar surface using projective transforms. This is a common 
assumption of most layer-based models, but it cannot accurately 
align arbitrary 3D shapes. Future work could include complex 
alignment tools such as morphing or plane-plus-parallax warping. 

Our current implementation assumes a standard uniprocessor PC. 
However, we are optimistic that our lazy-evaluation model can be 
adapted to parallel and distributed implementations because of its 
loosely coupled implementation.  Processing could also be done 
using the graphics processing unit on a graphics accelerator to 
increase the speed of calculation of videos. 

7. CONCLUSIONS 
We have presented Proscenium, a filter-graph framework for 
processing video as a spatio-temporal volume. Treating videos as 
spatio-temporal volumes enables new editing capabilities, which 
we have demonstrated by implementing a prototype video editing 
system. By providing the user with the capability to sheer, 

modify, restore, and resheer these volumes, we are able to provide 
an intuitive image-editing-like user interface that allows tools to 
be applied throughout the volume while interacting with only a 
small visible portion of the data. Our filter-graph framework 
allows operations on large volumes with minimal memory 
footprint.  
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