
CPU Power Management in Video
Transcoding Servers

2014. 3. 20

Minseok Song, Inha University

ACM NOSSDAV’ 14

Outline
 Introduction

 System model

 Problem formulation

 Algorithm

 Experimental results

 Conclusions

Introduction –Background

Companies like Netflix, Hulu, Apple, and Amazon helped drive the
over-the-top (OTT) video market past $8 billion in 2012. The three
largest markets—North America, Europe, and Asia-Pacific—
experienced YoY growth in excess of 50% in 2012. The continued
spread of connected CE and increasingly mobile devices, like
tablets, are expected to push the market past $20 billion by 2015.

https://www.abiresearch.com/press/over-60-growth-in-worldwide-over-the-top-video-rev

Revenue of OTT video is increasing sharply

DASH (Dynamic adaptive streaming over HTTP)
: Divides a video into segments and stores each segment into a
range of formats by transcoding (conversion of bit-rate, spatial
temporal resolution

DASH generates a major requirement of transcoding

3

Transcoding is now in great demand

Very heterogeneous devices need to be supported

techcrunch.com May 15, 2012
3,997 Models: Android Fragmentation As Seen By The Developers Of OpenSignalMaps

Introduction –Background

4

• Transcoding operations have real-time constraints
– 1) Sports broadcasting

• Prompt processing is very essential
– 2) VoD service

• Some delays may be allowed
– 3) Video clips uploaded by users

• Transcoding requests by high-priority clients need to be
processed faster than those requested by low-priority clients

– 4) Transcoding to the popular video formats needs to
be processed first

• Other formats can be processed later
• Unpopular videos can be processed later

5

Introduction –Motivation

• Transcoding is inherently CPU-intensive
– Need a lot of machines

• Result in high power consumption by the CPU

– Clustered architecture

6

Introduction –Motivation

⋯⋯⋯⋯ Back-end node

Front-end node

Shared storage

Reducing CPU power consumption is essential

7

Introduction –Objectives

• This paper reports the first report that
– Handles 1> real-time constraints of transcoding and

2> power management simultaneously
• How ?

– 1> Dynamic Voltage and Frequency Scaling (DVFS)
• Reducing CPU frequency can reduce power consumption

but slows down program execution
– 2> Workload distribution

⋯⋯⋯⋯ Back-end nodes

Front-end node

?

System model –Architecture

Shared storage

Front-end node

Back-end node 1 Back-end node 2 Back-end node

Transcoding requests

τ1 → backend node 1
Frequency: 2.4GHz

𝑁𝐶𝐶𝐶

τ10 → backend node 2
Frequency: 3.2GHz

τ15 → backend node 𝑁𝐶𝐶𝐶
Frequency: 1.2GHz

Request
distribution

Frequency
allocation

Admission
control

CPU 1 CPU 2 CPU 𝑁𝐶𝐶𝐶

8

9

System model –Model

• CPU model
– Each CPU 𝑗 can run at a number of discrete frequency

levels
• 𝑓𝑗(𝑘) is thCPU 𝑗 e frequency at level 𝑘 for CPU j

• 𝑓base = max
𝑗=1,…,𝑁cpu

𝑓𝑗(𝑁𝑗
freq)

• Task model
– Each task, 𝜏𝑖,has two parameter (𝐶𝑖, 𝐷𝑖)

• 𝐶𝑖 is the computation time required if the frequency is 𝑓base
• 𝐷𝑖 is a relative deadline, which is time difference the absolute

deadline and the current time.
– Actual computation time at frequency

• 𝐶𝑖(𝑘) 𝑓
base

𝑓𝑗(𝑘)

10

Problem formulation –Some concepts

• Utilization factor of task 𝜏 𝑖
– 𝑈𝑖 = 𝐶𝑖

𝐷𝑖

• EDF scheduling
– Higher priorities are given to tasks with earlier

deadlines

• Utilization bound of CPU 𝑗 at frequency level 𝑘

– 𝑈𝑗
bound (𝑘) = 𝑓𝑗(𝑘)

𝑓base

11

Problem formulation –Some concepts

• If the sum of utilization factors required by
all the tasks on CPU 𝑗 is less than or equal to
𝑈𝑗

bound 𝑘 , then all the tasks can be
transcoded before their deadlines

• ∑ 𝑈𝑖𝑡𝑎𝑎𝑘 𝑖 →𝐶𝐶𝐶 𝑗 ≤ 𝑈𝑗
bound (𝑘) =

 𝑓𝑗(𝑘)
 𝑓base

Increasing frequency level increases feasibility bound,
allowing more tasks to be transcoded before deadlines

12

Problem formulation –Tradeoff

Tradeoff between energy and number of tasks
transcoded before deadlines !

0.75

0.8

0.85

0.9

0.95

1

1.6 1.7 1.8 1.9 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.9 3 3.1 3.2

Sy
st

em
-w

id
e

en
er

gy

Frequency (GHz)

13

Problem formulation –Optimization

• Frequency and task allocation problem

Minimize ∑ ∑ 𝑥𝑖,𝑗𝑃𝑗(𝐹𝑗)𝑁cpu
𝑗=1

𝑁task
𝑖=1

s.t. 𝐹𝑗 = arg min𝑘=1,…,𝑁𝑗
freq ∑ 𝑥𝑖,𝑗𝑈𝑖𝑁task

𝑖=1 ≤ 𝑈𝑗bound(k)

 𝑥𝑖,𝑗 ∈ 0,1
 ∑ 𝑥𝑖,𝑗𝑁cpu

𝑗=1 = 1

𝐹𝑗 : Frequency level of CPU 𝑗

𝑥𝑖,𝑗 : task 𝜏 𝑖 is assigned to CPU 𝑗

𝑃𝑗(𝐹𝑗) : Power at frequency level 𝐹𝑗

14

Algorithm – Basic idea

• Three-phase algorithm
– 1> Frequency determination phase

• Choose preliminary values of frequencies for each CPU
– 𝐹𝑗 for CPU 𝑗

– 2> Task allocation phase
• Determines CPU index to which each task 𝜏 𝑖 is allocated

– 𝑥𝑖,𝑗 for task 𝜏 𝑖

– 3> Frequency escalation phase
• If ∑𝑈𝑖 > 𝑈𝑗

bound (𝑘) after the second phase, then
frequency levels of some CPUs are escalated

until ∀ 𝒊 ,∑𝑼𝒊 ≤ 𝑼𝒋
𝐛𝐛𝐛𝐛𝐛 (𝒌)

15

Algorithm – First phase

• 1> Minimum demand of utilization factors

– 𝑈demand = ∑ 𝐶𝑖
𝐷𝑖

𝑁task
𝑖=1

• 2> Formulation
– Minimize ∑ 𝑃𝑗(𝐹𝑗)𝑁cpu

𝑗=1

 s.t. ∑ 𝑈𝑗bound(𝐹𝑗)𝑁cpu

𝑗=1 ≥ 𝑈demand,
 𝐹𝑗 = 1, … , 𝑓𝑁𝑗

freq

• 3> Greedy algorithm

– 𝑟𝑗 𝑘 = 𝐶𝑗 𝑘 − 𝐶𝑗(1)
𝐶𝑗
bound 𝑘 − 𝐶𝑗

bound(1)

(Initialized to the first frequency level)

16

Algorithm – First phase

. . .

CPU 0 CPU 1 CPU 2 CPU 3 CPU N

2. Find the pair of CPU index 𝒄 and frequency level 𝒍 that has the lowest value of 𝒓𝒄(𝒍)

. . . 𝒓𝟎(𝟐) 𝒓𝟑(𝟒) 𝒓𝟏(𝟐) 𝒓𝟐(𝟐)

3. If the frequency level 𝒍 is higher than 𝑭𝒄, the value of 𝑭𝒄 is increased to 𝒍

𝑭𝟎 ← 𝟐 𝑭𝟑 ← 𝟒

4. Repeat until ∑ 𝑼𝒋
𝒃𝒃𝒃𝒃𝒃 (𝑭𝒋) ≥ 𝑼𝒃𝒅𝒅𝒅𝒃𝒃𝑵𝑪𝑪𝑼

𝒋=𝟏

𝑭𝟏 ← 𝟐 𝑭𝟐 ← 𝟐

1. All the variables 𝑭𝒋 are set to 1

𝑭𝟎 ← 𝟏 𝑭𝟑 ← 𝟏 𝑭𝟏 ← 𝟏 𝑭𝟐 ← 𝟏 𝑭𝑵 ← 𝟏

17

2. Find the index 𝒉 that has the highest value of the utilization factor for CPU 𝒉
 and assign task 𝒊 to CPU 𝒉 (set the value of 𝒙𝒊,𝒉 to 1)
3.Repeat until 𝑨 = ∅ (∀𝒙𝒊,𝒋 = 𝟏)

1. Maintains the array, 𝑨: 𝒊 ∀𝒙𝒊,𝒋 = 𝟎}

4. If all the tasks can’t be assigned to a CPU without violating the constraint,
 jump to third phase to satisfy the constraint

Algorithm – Second phase

. . .

CPU 0 CPU 1 CPU 2 CPU 3 CPU N

𝑭𝟎 ← 𝟐 𝑭𝟑 ← 𝟒 𝑭𝟏 ← 𝟐 𝑭𝟐 ← 𝟐 𝑭𝑵 ← 𝟏

𝜏 𝑖

Algorithm – Third phase

2. If the frequency level 𝒍 is higher than 𝑭𝒄, the value of 𝑭𝒄 is increased to 𝒍

. . . 𝒓𝟑(𝟔) 𝒓𝟐(𝟑) 𝒓𝟎(𝟑) 𝒓𝟏(𝟒)

1. Find the pair of CPU index 𝒄 and frequency level 𝒍 that has the lowest value of 𝒓𝒄(𝒍)

. . .

CPU 0 CPU 1 CPU 2 CPU 3 CPU N

𝑭𝟎 ← 𝟐 𝑭𝟑 ← 𝟒 𝑭𝟏 ← 𝟐 𝑭𝟐 ← 𝟐 𝑭𝑵 ← 𝟏 𝑭𝟑 ← 𝟔

18

19

Frequency determination

Start

feasible

Task allocation phase

End

FALSE

Frequency
escalation

TRUE

L: a list of rj(k), Fj

∀ 𝒊, 𝒋, xi,j = 0 Fj =0
Initialization

Updated list of L and values of Fj

, feasible xi,j

∀ 𝒋,𝑭𝒋=𝑵𝒋
𝐟𝐟𝐟𝐟

Admission fails

TRUE

FALSE

Algorithm –Flowchart

20

Algorithm – Issues

• 1> Task migration
– It is impossible to change the values of 𝑥𝑖,𝑗 for all

existing tasks
• All the values of 𝑥𝑖,𝑗 of existing clients are maintained
• 1) 𝑥𝑖,𝑗 of new clients and 2) 𝐹𝑗 values can be determined

• 2> EDF scheduling
– Linux provides the SCHED_FIFO class, which uses

fixed-priority scheduling
• 3> Admission control

– If the algorithm is infeasible even though the highest
frequency is chosen for every CPU, then admission fails

21

Experimental results – Simulation setup

• Simulation environments
– Measured energy values

• System-wide energy for 4 PCs
– Transcoding time

• Randomly selected between 30s and 300s
– Utilization factor

• Randomly chosen between 0.02 and 0.12
• Comparison

– 1>Non-DVFS
• Only highest frequency is chosen

– 2> Ondemand
• CPU utilization over recent 30 seconds exceed 80%, then the maximum

frequency level is chosen
• CPU utilization is below 0.4, then the frequency level is reduced by one

– 3> Ondemand-variant

22

Experimental results – Results

0.75

0.8

0.85

0.9

0.95

1

(0.1,0.4,0.36) (0.2,0.5,0.45) (0.3,0.6,0.51) (0.4,0.7,0.52) (0.5,0.8,0.53) (0.6,0.9,0.59) (0.8,0.9,0.77)

En
er

gy
 re

la
tiv

e
to

 n
on

-D
VF

S

(T low,T high,U avg)

Ondemand Ondemand-variant FTA-no FTA

Heavy Light

23

Experimental results – Results

0.75

0.8

0.85

0.9

0.95

1

24 28 32 36 40

En
er

gy
 re

la
tiv

e
to

 n
on

-D
VF

S

Number of CPUs

Ondemand Ondemand-variant FTA-no FTA

24

Experimental results – Results

0

0.05

0.1

0.15

0.2

0.25

20 24 28 32 36 40

D
ea

dl
in

e
m

is
s

ra
tio

of CPUS

Non-DVFS Ondemand

All tasks are transcoded before deadlines

25

Conclusions

⋯⋯⋯⋯

Clustered Transcoding Video Servers

High power
consumption

Heterogeneous
transcoding time

requirements

New DVFS algorithm

10% ~ 16% system-wide energy saving

	슬라이드 번호 1
	슬라이드 번호 2
	슬라이드 번호 3
	슬라이드 번호 4
	슬라이드 번호 5
	슬라이드 번호 6
	슬라이드 번호 7
	슬라이드 번호 8
	슬라이드 번호 9
	슬라이드 번호 10
	슬라이드 번호 11
	슬라이드 번호 12
	슬라이드 번호 13
	슬라이드 번호 14
	슬라이드 번호 15
	슬라이드 번호 16
	슬라이드 번호 17
	슬라이드 번호 18
	슬라이드 번호 19
	슬라이드 번호 20
	슬라이드 번호 21
	슬라이드 번호 22
	슬라이드 번호 23
	슬라이드 번호 24
	Conclusions

