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Introduction –Background  

Companies like Netflix, Hulu, Apple, and Amazon helped drive the 
over-the-top (OTT) video market past $8 billion in 2012. The three 
largest markets—North America, Europe, and Asia-Pacific—
experienced YoY growth in excess of 50% in 2012. The continued 
spread of connected CE and increasingly mobile devices, like 
tablets, are expected to push the market past $20 billion by 2015. 

https://www.abiresearch.com/press/over-60-growth-in-worldwide-over-the-top-video-rev 

Revenue of OTT video is increasing sharply 

DASH (Dynamic adaptive streaming over HTTP) 
: Divides a video into segments and stores each segment into a 
range of formats by transcoding (conversion of bit-rate, spatial 
temporal resolution 

DASH generates a major requirement of transcoding 
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Transcoding is now in great demand 

Very heterogeneous devices need to be supported 

techcrunch.com  May 15, 2012 
3,997 Models: Android Fragmentation As Seen By The Developers Of OpenSignalMaps

Introduction –Background  
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• Transcoding operations have real-time constraints 
– 1) Sports broadcasting  

• Prompt processing is very essential 
– 2) VoD service  

• Some delays may be allowed  
– 3) Video clips uploaded by users  

• Transcoding requests by high-priority clients need to be 
processed faster than those requested by low-priority clients 

– 4) Transcoding to the popular video formats needs to 
be processed first 

• Other formats can be processed later   
• Unpopular videos can be processed later 

5 

Introduction –Motivation  



• Transcoding is inherently CPU-intensive 
– Need a lot of machines  

• Result in high power consumption by the CPU 

– Clustered architecture 
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Introduction –Motivation  

⋯⋯⋯⋯ Back-end node 

Front-end node 

Shared storage 

Reducing CPU power consumption is essential 
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Introduction –Objectives 

• This paper reports the first report that   
– Handles 1> real-time constraints of transcoding and 

2> power management simultaneously 
• How ?  

– 1> Dynamic Voltage and Frequency Scaling (DVFS) 
• Reducing CPU frequency can  reduce power consumption 

but slows down program execution 
– 2> Workload distribution   

⋯⋯⋯⋯ Back-end nodes 

Front-end node 

? 



System model –Architecture  

Shared storage 

Front-end node 

Back-end node 1 Back-end node 2 Back-end node 

Transcoding requests 

τ1 → backend node 1 
Frequency: 2.4GHz 

𝑁𝐶𝐶𝐶 

τ10 → backend node 2 
Frequency: 3.2GHz 

τ15 → backend node 𝑁𝐶𝐶𝐶 
Frequency: 1.2GHz 

Request 
distribution 

Frequency 
allocation 

Admission 
control 

CPU 1 CPU 2 CPU 𝑁𝐶𝐶𝐶  
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System model –Model  

• CPU model 
– Each CPU 𝑗 can run at a number of discrete frequency 

levels  
• 𝑓𝑗(𝑘) is thCPU 𝑗 e frequency at level 𝑘 for CPU j 

• 𝑓base = max
𝑗=1,…,𝑁cpu 

𝑓𝑗(𝑁𝑗
freq) 

• Task model 
– Each task, 𝜏𝑖,has two parameter (𝐶𝑖, 𝐷𝑖) 

• 𝐶𝑖 is the computation time required if the frequency is 𝑓base 
• 𝐷𝑖   is a relative deadline, which is time difference the absolute 

deadline and the current time. 
– Actual computation time at frequency  

• 𝐶𝑖(𝑘) 𝑓
base

𝑓𝑗(𝑘)
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Problem formulation –Some concepts  

• Utilization factor of task 𝜏 𝑖 
– 𝑈𝑖 = 𝐶𝑖

𝐷𝑖
 

• EDF scheduling  
– Higher priorities are given to tasks with earlier 

deadlines 

• Utilization bound of CPU 𝑗 at frequency level 𝑘 

– 𝑈𝑗
bound (𝑘) = 𝑓𝑗(𝑘)

𝑓base
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Problem formulation –Some concepts   

• If the sum of utilization factors required by 
all the tasks on CPU 𝑗 is less than or equal to 
𝑈𝑗

bound 𝑘 , then all the tasks can be 
transcoded before their deadlines  

• ∑ 𝑈𝑖𝑡𝑎𝑎𝑘 𝑖 →𝐶𝐶𝐶 𝑗  ≤ 𝑈𝑗
bound (𝑘) =

 𝑓𝑗(𝑘)
 𝑓base

 

Increasing frequency level increases feasibility bound, 
allowing more tasks to be transcoded before deadlines 
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Problem formulation –Tradeoff 

Tradeoff between energy and number of tasks 
transcoded before deadlines ! 
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Problem formulation –Optimization 

• Frequency and task allocation problem 

Minimize ∑ ∑ 𝑥𝑖,𝑗𝑃𝑗(𝐹𝑗)𝑁cpu
𝑗=1

𝑁task
𝑖=1  

s.t.  𝐹𝑗 = arg min𝑘=1,…,𝑁𝑗
freq ∑ 𝑥𝑖,𝑗𝑈𝑖𝑁task

𝑖=1 ≤ 𝑈𝑗bound(k) 

  𝑥𝑖,𝑗 ∈ 0,1 
  ∑ 𝑥𝑖,𝑗𝑁cpu

𝑗=1 = 1 

𝐹𝑗 : Frequency level of CPU 𝑗  

𝑥𝑖,𝑗 : task 𝜏 𝑖 is assigned to CPU 𝑗  

𝑃𝑗(𝐹𝑗) : Power at frequency level 𝐹𝑗 
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Algorithm – Basic idea 

• Three-phase algorithm 
– 1> Frequency determination phase 

• Choose preliminary values of frequencies for each CPU 
– 𝐹𝑗 for CPU 𝑗 

– 2> Task allocation phase 
• Determines CPU index to which each task 𝜏 𝑖 is allocated  

– 𝑥𝑖,𝑗 for task 𝜏 𝑖 

– 3> Frequency escalation phase 
• If ∑𝑈𝑖 > 𝑈𝑗

bound  (𝑘)  after the second phase, then 
frequency levels of some CPUs are escalated    

until ∀ 𝒊 ,∑𝑼𝒊 ≤ 𝑼𝒋
𝐛𝐛𝐛𝐛𝐛  (𝒌)  
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Algorithm – First phase 

• 1> Minimum demand of utilization factors 

– 𝑈demand =  ∑ 𝐶𝑖
𝐷𝑖

𝑁task
𝑖=1   

• 2> Formulation 
– Minimize   ∑ 𝑃𝑗(𝐹𝑗)𝑁cpu

𝑗=1  
 
     s.t.        ∑ 𝑈𝑗bound(𝐹𝑗)𝑁cpu

𝑗=1  ≥  𝑈demand,  
         𝐹𝑗 = 1, … , 𝑓𝑁𝑗

freq 

• 3> Greedy algorithm 

– 𝑟𝑗 𝑘 = 𝐶𝑗 𝑘 − 𝐶𝑗(1)
𝐶𝑗
bound 𝑘 − 𝐶𝑗

bound(1)
 

(Initialized to the first frequency level) 
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Algorithm – First phase 

. . . 

CPU 0 CPU 1 CPU 2 CPU 3 CPU N 

2. Find the pair of CPU index 𝒄 and frequency level 𝒍 that has the lowest value of 𝒓𝒄(𝒍) 

. . . 𝒓𝟎(𝟐) 𝒓𝟑(𝟒) 𝒓𝟏(𝟐) 𝒓𝟐(𝟐) 

3. If the frequency level 𝒍 is higher than 𝑭𝒄, the value of  𝑭𝒄 is increased to 𝒍 

𝑭𝟎 ← 𝟐 𝑭𝟑 ← 𝟒 

4. Repeat until  ∑ 𝑼𝒋
𝒃𝒃𝒃𝒃𝒃 (𝑭𝒋) ≥ 𝑼𝒃𝒅𝒅𝒅𝒃𝒃𝑵𝑪𝑪𝑼

𝒋=𝟏  

𝑭𝟏 ← 𝟐 𝑭𝟐 ← 𝟐 

1. All the variables 𝑭𝒋 are set to 1 

𝑭𝟎 ← 𝟏 𝑭𝟑 ← 𝟏 𝑭𝟏 ← 𝟏 𝑭𝟐 ← 𝟏 𝑭𝑵 ← 𝟏 
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2. Find the index 𝒉 that has the highest value of the utilization factor for CPU 𝒉 
    and assign task 𝒊 to CPU 𝒉 (set the value of 𝒙𝒊,𝒉 to 1) 
3.Repeat until 𝑨 = ∅ (∀𝒙𝒊,𝒋 = 𝟏) 

1. Maintains the array, 𝑨: 𝒊  ∀𝒙𝒊,𝒋 = 𝟎} 

4. If all the tasks can’t be assigned to a CPU without violating the constraint, 
     jump to third phase to satisfy the constraint 

Algorithm – Second phase 

. . . 

CPU 0 CPU 1 CPU 2 CPU 3 CPU N 

𝑭𝟎 ← 𝟐 𝑭𝟑 ← 𝟒 𝑭𝟏 ← 𝟐 𝑭𝟐 ← 𝟐 𝑭𝑵 ← 𝟏 

𝜏 𝑖 



Algorithm – Third phase 

2. If the frequency level 𝒍 is higher than 𝑭𝒄, the value of  𝑭𝒄 is increased to 𝒍 

. . . 𝒓𝟑(𝟔) 𝒓𝟐(𝟑) 𝒓𝟎(𝟑) 𝒓𝟏(𝟒) 

1. Find the pair of CPU index 𝒄 and frequency level 𝒍 that has the lowest value of 𝒓𝒄(𝒍) 

. . . 

CPU 0 CPU 1 CPU 2 CPU 3 CPU N 

𝑭𝟎 ← 𝟐 𝑭𝟑 ← 𝟒 𝑭𝟏 ← 𝟐 𝑭𝟐 ← 𝟐 𝑭𝑵 ← 𝟏 𝑭𝟑 ← 𝟔 
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Frequency determination 

Start 

feasible 

Task allocation phase 

End 

FALSE 

Frequency 
escalation 

TRUE 

L: a list of rj(k), Fj 

∀ 𝒊, 𝒋,  xi,j = 0 Fj =0 
Initialization 

Updated list of L and values of  Fj 

, feasible xi,j  

∀ 𝒋,𝑭𝒋=𝑵𝒋
𝐟𝐟𝐟𝐟   

Admission fails 

TRUE 

FALSE 

Algorithm –Flowchart  
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Algorithm – Issues 

• 1> Task migration 
– It is impossible to change the values of 𝑥𝑖,𝑗 for all 

existing tasks  
• All the values of  𝑥𝑖,𝑗 of existing clients are maintained  
• 1) 𝑥𝑖,𝑗 of new clients and 2) 𝐹𝑗 values can be determined 

• 2> EDF scheduling 
– Linux provides the SCHED_FIFO class, which uses 

fixed-priority scheduling 
• 3> Admission control 

–  If the algorithm is infeasible even though the highest 
frequency is chosen for every CPU, then admission fails  
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Experimental results – Simulation setup 

• Simulation environments 
– Measured energy values  

• System-wide energy for 4 PCs  
– Transcoding time  

• Randomly selected between 30s and 300s 
– Utilization factor  

• Randomly chosen between 0.02 and 0.12  
• Comparison 

– 1>Non-DVFS 
• Only highest frequency is chosen 

– 2> Ondemand 
• CPU utilization over recent 30 seconds exceed 80%, then the maximum 

frequency level is chosen 
• CPU utilization is below 0.4, then the frequency level is reduced by one   

– 3> Ondemand-variant 
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Experimental results – Results 
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Experimental results – Results 
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Experimental results – Results 
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Conclusions 

⋯⋯⋯⋯ 

Clustered Transcoding Video Servers 

High power  
consumption  

Heterogeneous 
transcoding time  

requirements 

New DVFS algorithm 

10% ~ 16% system-wide energy saving  
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