Improving caching efficiency and quality of experience with CF-Dash

Ali Gouta

Zied Aouini, Anne-Marie Kermarrec, Yannick Le Louédec, Mamadou Tourad DIALLO

Introduction to DASH

"Cisco reported that mobile data traffic will reach 11.2 exabytes per month by 2017".

→ Shift toward HTTP adaptive streaming (HAS) solutions

HTTP adaptive streaming

Dataset overview

- 246.913 unique active clients during the measurement period.
- Collection from November 7th 2012 until January 9th 2013, involving mainly Apple HTTP Live Streaming (HLS) and Microsoft smooth streaming sessions (HSS).
- 1.763.516 adaptive streaming sessions (92.595.115 HTTP GET requests).
- Type of the contents: *Live* and *catch-up*.

Switching behavior of DASH users & & Cache-Friendly Dash

Distribution of the requested profiles

Profile i	Encoding bitrate (kbps)
Profile 0 (P_0)	< 50
Profile 1 (P_1)	[50-150)
Profile 2 (P_2)	[150-280)
Profile 3 (P_3)	[280-420)
Profile 4 (P_4)	[420-600)
Profile 5 (P_5)	[600-1000)
Profile 6 (P_6)	[1000-2000)
Profile 7 (P_7)	≥ 2000

Clients request mostly profiles: 5, 4 and 3.

profile 2	profile 5		
profile 1	profile 4	profile 7	
profile 0	profile 3	profile 6	

Frequency of bitrate-switching

	(0	0.0997	0.2650	0.2685	0.1784	0.1358	0.0460	0.0066
	0.0053	0	0.1533	0.3482	0.2683	0.1753	0.0464	0.0029
	0.0036	0.0405	0	0.4237	0.28	0.2034	0.0456	0.0028
	0.0021	0.0410	0.2496	0	0.4204	0.2400	0.0330	0.0011
=	0.0007	0.0192	0.1271	0.3867	0	0.4080	0.0500	0.0079
	0.0009	0.0099	0.0817	0.2005	0.4790	0	0.2016	0.0260
	0.001	0.0055	0.0303	0.0739	0.1617	0.6060	0	0.1213
	0.0004	0.0018	0.0078	0.0160	0.0441	0.2266	0.7031	0 /

Switching from *P_ito P_j*

Number of transitions during HAS sessions

In average, the number of transitions during a HAS session is bounded between [1/6; 1/2] of the total requested chunks per session.

 \Rightarrow Implications on caching efficiency: This reduces the performance of the cache in term of hit-ratio.

Simulation Scenario

Assumptions

- Single profile: 640kbps
- Multi-profile:

[40, 64, 240, 360, 440, 640, 1840, 2540]

- All chunks are 10 second length.
- We only consider the Catch-up TV sessions.
- LRU
- Clients do not make any jump forward/backward during the video session.

✤QoE evaluation

• Subjective quality evaluation: Film, Sport, News.

Profile	Video resolution	Bitrate (kbps)	User perception (MOS)
Profile 1	176*144	100	Bad(1)
Profile 2	280*160	210	Bad(1.2)
Profile 3	320*180	250	medium (2.2)
Profile 4	400*224	510	good (3.3)
Profile 5	480*270	900	good (3.8)
Profile 6	640*360	1500	Excellent (4)
Profile 7	1024*576	3500	Excellent (4.5)

CF-Dash (Cache Friendly-Dash):

Goal is 2-fold

 sustain the quality of experience of mobile clients: Prevent clients to turn systematically to the highest profiles even though they experience a high bandwidth. This increases the probability to other clients to download chunks from the cache.
⇒ Fairness.

improving caching efficiency: Reduce the number of switching between qualities.
Stability.

Rational:

=> Defining a *profile-limit (PL)*, where this profile should afford a good user-experience **and** improves the caching efficiency.

=> Clients do not scales systematically above the PL. If desired they have to manually fix this profile.

Testbed experiments

CF-Dash implementation

•**HTTP Module**: Exchange of messages between the client-player and the cache to learn about the *profile-limit*.

•MPD Parser and Downloading controller: to hinder the client-player from

switching systematically to profiles above the *profile-limit*.

Testbed implementation (PoC)

Swithcing between qualities:

✤ Gain in Hit-Ratio:

Conclusion

- CF-Dash aims to give the network delivery actors (CDNs, operators,...) to assist the client-player to select the video quality that both clients' players and content delivery actors find it convenient to serve. This is in line with dash2.0 (SAND).
- Futur works:

we will further investigate the ideal profile to be cached and define incentive strategies to encourage clients requesting the same encoding profiles. Any question?

Thank you