
Blink: Advanced Display Multiplexing for Virtualized
Applications

Jacob Gorm Hansen
Department of Computer Science

University of Copenhagen
Denmark

jacobg@diku.dk

ABSTRACT
Providing untrusted applications with shared and safe ac-
cess to modern display hardware is of increasing importance.
Our new display system, called Blink, safely multiplexes
complex graphical content from multiple untrusted Virtual
Machines onto a single Graphics Processing Unit (GPU).
Blink does not allow clients to program the GPU directly,
but instead provides a virtual processor abstraction which
they can program. Blink executes virtual processor pro-
grams and controls the GPU on behalf of the client, in a
manner that reduces processing and context switching over-
heads. Blink provides its own stored procedure abstraction
for efficient hardware access, but also supports fast emula-
tion of legacy OpenGL programs. To achieve performance
and safety, Blink employs just-in-time compilation and sim-
ple program inspection.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Se-
curity kernels; D.4.8 [Operating Systems]: Performance;
I.3.2 [Computer Graphics]: Graphics Systems

General Terms
Performance, Experimentation, Security

Keywords
Graphics, virtualization, hardware acceleration, just-in-time
compilation, interpretation

1. INTRODUCTION
In addition to their popularity in data centers, Virtual

Machines (VMs) are increasingly deployed on client ma-
chines, e.g. to allow for compartmentalization of untrusted
software downloaded from the Internet [7], or for ease of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV ’07 Urbana, Illinois USA
Copyright 2007 ACM 978-1-59593-746-9/06/2007 ...$5.00.

Figure 1: Blink running GLGears and MPlayer.

management [5]. VM technology is quickly becoming com-
moditized, and it is conceivable that future desktop operat-
ing systems will ship with VM-style containers as a standard
feature. While initially users may be willing to put up with
seeing multiple desktops in a simple picture-in-picture fash-
ion, over time the demand for more integrated and seamless
experiences will grow. Users will expect virtualized applica-
tions to blend in nicely, and will want to make use of graph-
ics hardware acceleration, for games, simulations, and video
conferencing. Our work attempts to address this need by
providing virtual machines with access to the powerful accel-
erated drawing features of modern display hardware, with-
out compromising the safety guarantees of the VM model.

Compared to other I/O subsystems, the display system is
harder to multiplex in a way that is both efficient and safe,
especially for demanding applications such as 3D games or
full-screen video. This is evidenced by the fact that the ma-
jor operating systems all provide “direct” avenues of pro-
gramming the graphics card, largely without operating sys-
tem involvement, but at the danger of being able to crash
the graphics adapter or lock up the entire machine [11]. Be-
cause of this danger, untrusted software running inside VMs
should not be given direct hardware access, and a layer of
indirection between client and hardware is necessary. Such
a layer should also provide a hardware-independent abstrac-
tion, to allow a VM to run unmodified across different types
of graphics adapters. One way of implementing this layer
is by letting clients program to a high-level API, and have
a trusted display system translate API commands into pro-
gramming of the actual hardware. The trusted translation

Figure 2: Blink client VMs communicate with
the server VM using shared memory. Dedicated
BlinkGL clients access the BlinkGL primitives di-
rectly, and unmodified OpenGL clients go through
an OpenGL driver library.

step verifies the safety of each API command, and then for-
wards commands to the graphics card driver. In this way,
applications can be prevented from bypassing address space
protection with malicious DMA operations, or exploiting
bugs in graphics hardware or driver APIs. All use of hard-
ware resources can be tracked and subjected to a policy
that prevents one application from causing starvation, e.g.
by consuming all memory on the graphics card.

2. DESIGN AND IMPLEMENTATION
This paper describes Blink, a prototype system for pro-

viding untrusted VMs with safe and efficient access to mod-
ern display hardware. Blink aims to be as safe, simple and
flexible as possible, while at the same time retaining full
performance.

The goal of Blink is to serve as the display component of a
system where each application is encapsulated inside its own
VM. Blink is backwards-compatible with existing software,
through emulation layers for X11, kernel framebuffers, or
OpenGL, but performance may be enhanced by adjusting
applications to bypass these layers and use Blink directly.

The Blink prototype runs on top of the Xen [1] virtual
machine monitor. The Blink display server runs as a reg-
ular user-application inside a Linux guest VM, using com-
mercially developed device drivers for graphics hardware ac-
cess. The VM running the Blink server mediates access to
the graphics hardware, and clients running inside untrusted
VMs talk to this server using a shared-memory protocol, as
shown in figure 2.

In the remainder of this section, we first briefly introduce
3D programming using OpenGL, and the challenges faced
when trying to make an OpenGL-like abstraction to clients
in separate protection domains. From there, we describe
the key points of our design, and how they have been im-
plemented in our prototype.

2.1 GPU Programming
Most modern GPU programming is done using APIs such

as OpenGL [15] or Direct3D [3]. Our work focuses on OpenGL,
a standardized API that is available on most platforms. An
OpenGL (GL) program is a sequence of API-calls, of the
form glName(args), where Name is the name of the called
GL command. Some commands modify state such as trans-
formation matrices, lighting and texturing parameters, and
some result in immediate drawing to the screen. Drawing
commands are enclosed in glBegin() and glEnd() pairs, e.g.
the following GL program draws a triangle:

glBegin(GL_TRIANGLES);

glVertex (0,0);

glVertex (1,0);

glVertex (1,1);

glEnd();

An OpenGL API implementation is often split into two
parts. The kernel part provides primitives for accessing
graphics card DMA buffers and hardware registers, and the
user space part—a GPU-specific shared library known as the
Installable Client Driver (ICD)—accesses these primitives to
translate GL API calls into programming of the GPU. Thus,
the output of an OpenGL program can be re-targeted to new
hardware, or to a virtualized abstraction, by replacing the
ICD installation files.

2.2 Off-Screen Buffers
In a traditional windowing system, each application owns

one or more clearly defined rectangular regions of the screen,
and such systems expend much effort clipping drawing oper-
ations to correctly fall within these regions. With the advent
of faster graphics cards with greater amounts of video mem-
ory, a new model has become dominant. Pioneered by the
MacOSX “Quartz” composited display system, the new ap-
proach is to give each application its own off-screen buffer, a
contiguous range of video memory to which the application
may draw freely. The display system runs a special compos-
itor process which takes care of painting all of the off-screen
buffers to the screen, in back-to-front order. The benefits of
this model are simplicity and the support for advanced ef-
fects such as translucent or zooming windows. The problem
with this model is the great amount of memory required for
off-screen buffers, to avoid context-switching back and forth
between the server and all clients every time the screen is
redrawn. There are also cases where off-screen buffers are
likely to contain redundant information, e.g. in the case of
a video player. A video player will often decode the current
video frame to a texture with the CPU, then use the GPU
to display the texture mapped onto a rectangular surface. If
the video player is forced to go via an off-screen buffer, the
frame will have to be copied twice by the GPU, first when
it is drawn to the off-screen buffer, and second when the
display is composed by the display system. In our proposed
system, the decision of whether and how to use off-screen
buffers is left to applications. As we shall see, this flexibility
is achieved by letting applications execute code as Stored
Procedures (SPs) inside the display server.

2.3 BlinkGL Stored Procedures
Virtual machine systems often exploit existing wire proto-

cols when communicating between a VM and the surround-
ing host environment. For instance, a remote desktop pro-
tocol such as RDP or VNC makes connecting a VM to the
display relatively straight-forward. VNC and RDP com-
municate screen updates in terms of pixels and rectangles.
Remote display of 3D may be achieved in these systems by
rendering the final image server-side [8], though at an addi-
tional cost in bandwidth, and with the risk of server CPU
or GPU contention.

When wishing to render 3D content locally on the client,
the common solution is to serialize rendering commands,
into batches of Remote Procedure Calls (RPCs [2]), which
are then communicated over the wire protocol. In addi-
tion to the cost of communication, this method carries a
performance overhead, due to the cost of serializing and de-

serializing command streams. In OpenGL, translation costs
can be amortized to some extent by the use of display lists,
macro-sequences of GL commands stored in video memory.
However, display lists are static and only useful in the parts
of the GL program that need not adapt to frequently chang-
ing conditions. Blink extends the display list abstraction
into more general and flexible BlinkGL stored procedures.
Because stored procedures are richer in functionality than
display lists, they can handle simple user interactions—e.g.
redrawing the mouse cursor or highlighting a pushbutton in
response to a mouse rollover—independently of the applica-
tion VM.

BlinkGL is a super-set of OpenGL. BlinkGL stored pro-
cedures run on the CPU—inside the display server—and
in addition to GL commands they can also perform sim-
ple arithmetic and control operations. Stored procedures
are sequences of serialized BlinkGL commands, with each
command consisting of an opcode and a set of parameters.
A part of the opcode space is reserved for special opera-
tions for virtual register copying, arithmetic, or conditional
forward-jumps. External state, such as mouse coordinates
or window dimensions, can be read into registers with spe-
cial BlinkGL calls, processed, and the results given as argu-
ments to other BlinkGL calls that take register arguments.
The Blink server contains a Just-In-Time (JIT) compiler
that converts BlinkGL into native CPU machine code that
is invoked during screen redraw or in response to user in-
put. Because of the simplicity of BlinkGL, JIT compilation
is fast, and for GL calls the generated code is of similar
quality to the output of a C-compiler. Apart from amortiz-
ing translation costs, the use of SPs also has two additional
benefits: CPU context switching is greatly reduced because
each client does not have to be consulted upon every display
update, and in many cases the use of off-screen buffers to
hold client areas can be avoided by drawing client areas with
SPs on the fly.

2.4 Program Inspection
Some aspects of SP execution require additional check-

ing, e.g. to prevent clients drawing outside of their windows.
During JIT compilation, commands and parameters are in-
spected, and filtered or adjusted according to various poli-
cies. This inspection allows the Blink server to weed out un-
wanted client actions, but also enables global optimizations
that exploit advance knowledge of client behavior. If the
client is known not to use the Z-buffer for depth-ordering
of drawing operations, then the Z-buffer does not need to
be cleared before invoking the client’s redraw code, and if
the client is not enabling transparency, content covered by
the client’s rectangle does not need to be redrawn. Dur-
ing compilation, the safety of each SP command is checked,
so that out-of-bounds parameters or illegal command se-
quences may be detected before the SP is allowed to run.

2.5 Versioned Shared Objects
VMs residing on the same physical host may communi-

cate through shared memory, instead of using wire proto-
cols that are likely to introduce extra data copying, espe-
cially problematic for large texture or framebuffer objects.
Client VMs communicate with Blink through an array of
Versioned Shared Objects (VSO’s). A VSO is an in-memory
data record containing an object identifier (OID), an object
type identifier, a version number, and a list of memory pages

Figure 3: Versioned Shared Objects with OID’s 1
and 2 respectively, pointing to physical machine
page frames. The first object contains a BlinkGL
stored procedure, and the second a texture image.

containing object data. When Blink receives an update noti-
fication from a client VM, it scans through the client’s VSO
array, looking for updated objects. When a changed or new
object is encountered, Blink performs type-specific process-
ing of object contents, such as JIT compilation of stored
procedures, and incorporates any changes in the next dis-
play update. Each VM may maintain several VSO arrays,
to accommodate the use of multiple OpenGL hardware con-
texts for different clients within the VM, and care is taken
to avoid scanning unmodified arrays. The scan is linear in
the number of VSO’s in the array, but more elaborate data
structures can be envisioned if the scalability of the current
approach becomes an issue. Figure 3 shows the first two
objects in a VSO array containing a stored procedure and
a texture object. Most GL commands are called directly
by the JIT’ed machine code, but commands taking pointer
arguments are treated specially. For example, the glTexIm-
age2D() command uploads a texture from a main memory
address to the graphics card. Blink’s version of the com-
mand instead takes a VSO OID, which is then resolved into
a memory address during compilation. Texture data gets
DMA’ed from application to video memory, and inter-VM
copying is avoided.

2.6 Virtualizing Standard OpenGL
Rather than expecting all existing OpenGL software to

be rewritten as BlinkGL, Blink also contains a compatibil-
ity wrapper which allows unmodified OpenGL software to
display via Blink. This wrapper is implemented as a cus-
tom, client-side ICD, with the help of an additional BlinkGL
command, called glEval(), in the Blink server.

The glEval command invokes an interpreter that under-
stands serialized standard OpenGL and executes it imme-
diately, and by combining client-side driver code with a
server-side SP in a producer-consumer pair, it is possible
to transparently host unmodified OpenGL software. Like
other display systems that compose multiple OpenGL clients
to a shared display, the wrapper needs off-screen buffers to
avoid flicker or artifacts, and to allow arbitrary effects such
as transparent windows. However, this functionality is not
supported by the Blink display server. Instead, SPs that
are part of the client ICD handle this by executing glEval()
in the context of an off-screen buffer, and drawing the off-
screen buffer onto a texture during the redraw SP. This way,
Blink is able to host unmodified OpenGL applications, and
to subject them to arbitrary transformations when compos-
ing the screen.

For the code interpreted by glEval(), the overhead of full
JIT compilation is not justifiable. Instead, Blink implements
a specialized interpreter for serialized OpenGL streams. When
writing an interpreter, the choice is basically between imple-
menting a “giant switch” with a case for each opcode num-
ber, or the “threaded code” approach, with a jump-table
with an entry for each opcode number, both of which may
be implemented as portable C code. On modern architec-
tures, both approaches suffer from poor branch prediction
accuracy, as low as 2%-50%, due to a large number of indi-
rect branches [10]. Furthermore, the ratio of arguments to
opcodes is high for serialized OpenGL, so a traditional in-
terpreter has to spend much of its time copying arguments
from the input program to the parameter stack of the called
GL API function. As a more efficient alternative, we de-
signed a new interpretation technique which we refer to as
Stack Replay.

Stack Replay is a simple and fast interpretation technique
designed specifically for the characteristics of OpenGL and
similar sequences of batched remote procedure calls. It is
based on the observation that a serialized OpenGL program
is little more than an array of call-stacks. This means that
parameter copying can be avoided altogether by pointing
the stack pointer directly to opcode parameters before each
API call. Branch prediction can be improved by using a
minimal code-generator which converts input programs into
machine code sequences of API calls interleaved with incre-
ments of the stack pointer register, so that arguments are
consumed directly from the input program without copy-
ing.1 This approach is platform-specific, but does offer bet-
ter performance than platform neutral alternatives such as
a giant-switch interpreter, which could still be provided as a
fall-back on other platforms. The platform-specific parts of
the interpreter consist of a seven line main-loop in C, and 10
lines of inline x86 assembly pre- and postambles, used when
calling a batch of generated code.

When using Linux as the guest VM, the Blink client driver
also supports displaying the Linux kernel framebuffer and
X11 on an OpenGL texture. This is accomplished by adding
a framebuffer driver, which maps a main memory buffer onto
a BlinkGL texture, to the guest Linux kernel. Using this
driver it is possible to run legacy text mode and X11 appli-
cations on top of Blink. Figure 4 shows X11 running on top
of a BlinkGL texture.

2.7 Display State Recovery
The precursor to Blink was the 2D Tahoma [7] Display

System (TDS). TDS was completely stateless, with the dis-
play acting merely as a cache of client content. Among other
benefits, this allowed for checkpointing and migration [6]
of VMs. BlinkGL clients can be implemented to be state-
less, e.g. the server just calls the client’s initialization SP to
recreate any missing state, but the transparently virtualized
OpenGL programs are not stateless out of the box, because
OpenGL is itself a stateful protocol. To solve this prob-
lem, we have added a state-tracking facility to the client-
side OpenGL emulation layer, so that copies of all relevant

1The reader will notice that using the stack in this manner
destroys the input program, and that space must be avail-
able at the head of the program, as otherwise the stack will
overflow. The first is not a problem, because programs need
only be interpreted once. The latter we deal with by proper
use of virtual memory mappings.

Figure 4: Blink running in root-less mode on top
of X11. Here, the kernel framebuffer is shown, both
running a text mode console and with X11 in a VM,
running a web browser.

state are maintained inside the address space of the calling
application. Display lists and textures are captured verba-
tim, and the effects of transformation to the OpenGL matrix
stack are tracked, so that they can later be replayed. Our
approach here is in many ways similar to the one described
by Buck et.al. [4], but with the purpose of being able to
recreate lost state, rather than as a performance optimiza-
tion.

3. EVALUATION
In this section we attempt to measure key aspects of Blink’s

performance. At the micro-level we measure the overheads
introduced by JIT compilation and interpretation, and at
the macro-level we measure overall system throughput for a
simple application. These benchmarks do not claim to be
an exhaustive evaluation, but they give a good indication of
how Blink performs relative to native OpenGL code.

We evaluated Blink on a low-end desktop PC, a Dell Opti-
plex GX260 PC with a 2GHz single-threaded Intel Pentium4
CPU, with 512kB cache and 1024MB SDRAM. The machine
was equipped with an ATI Radeon 9600SE 4xAGP card with
128MB DDR RAM, using ATI’s proprietary OpenGL dis-
play driver.

We first evaluated JIT compiler performance. We instru-
mented the compiler to read the CPU time stamp counter
before and after compilation, and report average number of
CPU cycles spent per input BlinkGL instruction. Because
we did not measure OpenGL performance in this test, all
call-instructions emitted by the compiler point to a dummy
function which simply returns. We measured instructions
spent per executed virtual instruction, and report per vir-
tual instruction averages.

As input we created two programs; the first (OpenGL-
mix) is the setup phase of the GLGears application, repeated
six times. This program performs various setup operations,
followed by upload of a large amount of vertexes for the gear
objects with the glVertex() command. The second (Arith-
mix) is mix of 8 arithmetic operations over two virtual reg-
isters, repeated for every combination of the 32 virtual reg-
isters. Both programs consist of roughly 8K instructions,
performance figures are in table 1. We noticed that subse-
quent invocations (numbers in parentheses) of the compiler

 20

 25

 30

 35

 2 4 6 8 10 12 14

U
pd

at
e

in
te

rv
al

 (
m

s)

Number of GLGears VMs

Avg. client update interval
GearsSP

GearsSwitch

Figure 5: Averaged delay between frame updates
of the OpenGL Gears demo. GearsSP uses stored
procedures; GearsSwitch context switches between
VMs.

Type of input #Instr. Compile Execute

OpenGL JIT 8,034 102 (41) cpi 41 cpi
Arithmetic JIT 8,192 99 (55) cpi 50 cpi
OpenGL interpr. 8,191 0 cpi 59 cpi

Table 1: Cycles-per-instruction for the JIT com-
piled SPs, and for interpreted OpenGL streams, on
a 2GHz Pentium 4. Numbers in parentheses with
warm cache.

were almost twice as fast as the first one, most likely be-
cause of the warmer caches on the second run. We expect
larger programs and multiple SPs compiled in sequence to
see similar performance gains. Arithmetic operations on vir-
tual floating point registers are costlier than GL calls, as we
make little attempt to optimize them. Finally, we measure
the cost of interpretation. We call the interpreter with an in-
put program similar to OpenGL-mix, and measure the cost
of interpretation using Stack Replay. As before, all calls are
to dummy functions that simply return immediately. We
see that the use of interpretation adds about 44% overhead
compared with the execution of JIT compiled code (59 vs.
41 cpi respectively). Thus there is benefit to using the JIT
compiler in cases where the cost can be amortized, but the
interpreter yields reasonable performance as well.

To validate our claim that for GL-calls the JIT compiler
produces code of similar-quality as gcc, we also ran the
OpenGL-mix code in two scenarios—statically compiled into
the display server, and in the JIT compiled version. Perfor-
mance of the two programs is nearly identical, as can be
seen in table 2.

Secondly we measured overall system throughput. For
this we ported the classic GLGears demo to display using
Blink Stored Procedures. GLGears displays three spinning
gears 3D rendered into a 512x512 window. We ran multiple
GLGears instances, each in a separate VM, and measured
the average time deltas between client updates.

The Blink version of GLGears uses SP register arithmetic
to transform the gear objects independently of the client.
To gauge the improvement obtained by not having to con-
tact the client for each display update, we run two versions
of Gears: GearsSP which uses stored procedure arithmetic
and avoids context switching, and GearsSwitch which is up-
dated by the client for each screen redraw. Figure 5 shows
time-deltas as a function of the number of VMs. We see
that GearsSP is able to maintain a steady frame rate of 50
frames per second for more than three times the amount of
VMs than GearsSwitch, due to its avoidance of CPU context
switches.

Scenario Execute

Native ATI driver call (gcc 3.3.6) 552 cpi
Blink Stored Procedure 554 cpi

Table 2: Cycles per OpenGL command, when exe-
cuted using the native driver, or through JIT com-
piled code.

Type of input Redraw rate

Linux Direct Rendering 6834 fps
BlinkGL JIT compiled 6564 fps
Interpreted OpenGL on Blink 4940 fps

Table 3: Frames-per-second, for a 512x512 GLGears
demo, on an Intel Core Duo 2, with a 256MB nVidia
GeForce 7900GS graphics card.

The final test was run on more modern hardware, a 2.1GHz
Intel Core Duo 2 CPU, equipped with a 256MB nVidia
GeForce 7900GS graphics card, and nVidia’s proprietary
graphics driver. Again, we are using the GLGears OpenGL
demo as our benchmark, measuring total frames per second.
Results are tabulated in table 3. In line with our previous
results, BlinkGL stored procedures execute at close to native
speed, while the overhead of interpreting command streams
and off-screen buffer rendering results in approximately 25%
drop in frames per second, for the OpenGL emulation case.
We attribute most of this overhead to the extra copying
needed for the off-screen buffer.

4. RELATED WORK
The X Window System (X11) facilitates remote display,

and the protocol’s extensibility means that other protocols
such as OpenGL can be tunneled inside X connections. Un-
fortunately, currently popular versions of X have very large
code bases, making them hard to trust security-wise. Ef-
forts to create trusted X implementations [9] have not had
lasting impact, and many of the assumptions on which X is
based (e.g. the need for remote font servers or support for
monochrome or color-mapped displays) are no longer rele-
vant. For these reasons, we have chosen not to base our
work on X.

Recently, the VMGL [16] project has adopted Chromium
[14] to work across VM boundaries, over TCP/IP. Like Blink,
VMGL supports state tracking for use in VM checkpointing
and migration, and VMGL currently implements a larger
subset of OpenGL than Blink. Blink employs JIT compila-
tion and static verification of stored procedures, and saves
the overhead of passing all data through a pair of network
protocol stacks by optimizing for the common case of client
and server being on the same physical machine. VMWare
Inc. has also announced experimental support for Direct3D
virtualization in their desktop products. Blink does not
support Direct3D, but a potential workaround is to run a
Direct3D emulator on top of OpenGL, e.g. Transgaming’s
Cedega 2 technology.

Specialized secure 2D display systems for microkernels
have been described for L4 [12] and EROS [18]. Both sys-
tems make use of shared memory graphics buffers between
client and server, and both describe mechanisms for secure

2http://www.transgaming.com

labeling of window contents. Our work addresses the grow-
ing need for 3D acceleration but currently our labeling mech-
anism is rather crude.

5. FUTURE WORK
Blink allows an untrusted application to drive a 3D dis-

play, and allows the application to be implemented in a
stateless manner. We are currently working on combining
Blink with the self-migration and checkpointing mechanism
described in previous work [13]. This combination allows
us to live-checkpoint Blink VMs to stable storage, e.g. to a
hard- or flash drive, and to fork and live-migrate applica-
tion VMs across the network. This is similar to the system
proposed by Potter et.al. [17], but with the difference that
checkpointing is performed from within the VM, and may
be done in the background without interrupting the user.

6. CONCLUSION
Blink demonstrates that today’s advanced display devices

can be multiplexed in a safe manner without poor perfor-
mance. Blink emphasizes achieving safety with high perfor-
mance, since enforcement overhead is often the main obsta-
cle to the adoption of security mechanisms. In particular,
a less efficient enforcement mechanism might not scale with
the currently rapid growth in GPU capabilities.

Blink achieves safety by using a simple, fast JIT compiler
and a shared-memory protocol that also helps reduce the
cost of client/server communication. Blink further reduces
overhead by amortizing JIT translation costs over multiple
display updates and composing multiple applications to the
same screen without a need for off-screen buffers. In ad-
dition, Blink remains backwards-compatible by employing
an efficient and novel batch RPC interpretation technique,
knows as Stack Replay. As a result, Blink allows for safe,
practical display sharing even between soft-realtime graph-
ics applications and legacy code.

7. ACKNOWLEDGMENTS
The author wishes to thank Úlfar Erlingsson for his help

in preparing this paper, and Jørgen S. Hansen, Eske Chris-
tiansen, Eric Jul, Niraj Tolia, and the anonymous reviewers,
for their suggestions and comments on previous versions.

8. REFERENCES
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand,

T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
Proc. of the 19th ACM symposium on Operating
Systems Principles (SOSP19), pages 164–177. ACM
Press, 2003.

[2] A. D. Birrell and B. J. Nelson. Implementing remote
procedure calls. ACM Trans. Comput. Syst.,
2(1):39–59, 1984.

[3] D. Blythe. The Direct3D 10 System. In Proc. of the
33rd ACM SIGGRAPH conference, 2006.

[4] I. Buck, G. Humphreys, and P. Hanrahan. Tracking
graphics state for networked rendering. Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS workshop
on Graphics hardware, pages 87–95, 2000.

[5] R. Chandra, N. Zeldovich, C. Sapuntzakis, and
M. Lam. The Collective: A cache-based system

management architecture. In Proceedings of the
Second Symposium on Networked Systems Design and
Implementation, pages 259–272, May 2005.

[6] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live Migration
of Virtual Machines. In Proceedings of the 2nd
Networked Systems Design and Implementation NSDI
’05, May 2005.

[7] R. S. Cox, J. G. Hansen, S. D. Gribble, and H. M.
Levy. A safety-oriented platform for web applications.
In Proceedings of the 2006 IEEE Symposium on
Security and Privacy, May 2006.

[8] D. De Winter, P. Simoens, L. Deboosere, F. De Turck,
J. Moreau, B. Dhoedt, and P. Demeester. A Hybrid
Thin-Client protocol for Multimedia Streaming and
Interactive Gaming Applications. In the 16th Annual
International Workshop on Network and Operating
Systems Support for Digital Audio and Video
(NOSSDAV), June 2006.

[9] J. Epstein, J. McHugh, H. Orman, R. Pascale,
A. Marmor-Squires, B. Dancer, C. Martin,
M. Branstad, G. Benson, and D. Rothnie. A
high-assurance window system prototype. Journal of
Computer Security, 2(2-3):159–190, 1993.

[10] M. Ertl and D. Gregg. Optimizing indirect branch
prediction accuracy in virtual machine interpreters,
2003.

[11] R. E. Faith and K. E. Martin. A security analysis of
the direct rendering infrastructure, 1999.
http://precisioninsight.com/dr/security.html
(archive.org copy).

[12] N. Feske and C. Helmuth. A Nitpicker’s guide to a
minimal-complexity secure GUI. In In Proceedings of
the 21st Annual IEEE Computer Security Applications
Conference, pages 85–94, December 2005.

[13] J. G. Hansen and E. Jul. Self-migration of operating
systems. In Proceedings of the 11th ACM SIGOPS
European Workshop (EW 2004), pages 126–130, 2004.

[14] G. Humphreys, M. Houston, R. Ng, R. Frank,
S. Ahern, P. Kirchner, and J. Klosowski. Chromium: a
stream-processing framework for interactive rendering
on clusters. ACM Transactions on Graphics,
21(3):693–702, 2002.

[15] M. J. Kilgard. Realizing OpenGL: two
implementations of one architecture. In HWWS ’97:
Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS workshop on
Graphics hardware, pages 45–55, New York, NY, USA,
1997. ACM Press.

[16] H. A. Lagar-Cavilla, N. Tolia, M. Satyanarayanan, and
E. de Lara. VMM-independent graphics acceleration.
In Proceedings of VEE 2007. ACM Press, June 2007.

[17] S. Potter and J. Nieh. Webpod: persistent web
browsing sessions with pocketable storage devices. In
WWW ’05: Proceedings of the 14th international
conference on World Wide Web, pages 603–612, New
York, NY, USA, 2005. ACM Press.

[18] J. S. Shapiro, J. Vanderburgh, E. Northup, and
D. Chizmadia. Design of the EROS trusted window
system. In Proceedings of the Thirteeenth USENIX
Security Symposium, San Diego, CA, August 2004.

