Programmable Network Processors -- an opportunity for proactive networking

Alan Crouch Director, Network Platforms Intel Labs alan.crouch@intel.com May 13, 2002

The 12th International Workshop on Network and Operating Systems Support for Digital Audio and Video

intel

Intel Communications Group

OUTLINE

→• The Environment

- What is a network processor?
- Intel's Vision and Contribution

inta

- Technical Challenges
- Summary

Communications Industry Transition

Vertically integrated communication vendors moving to building block approach

- Programmable switching platform
- Control/Service logic moves to standard computing platforms

Implications

- Multiple, independent services on same switching platform
- Allows rapid, dynamic innovation in services
- Customer, service or VPN-specific resource guarantees possible
- Example: SoftSwitch Initiative

Lesson from the past: Computer Industry Transition

Intel Communications Group Page 4 intel

Business Value Proposition for Systems Vendors

ASICs giving way to programmable Silicon

- Time-to-Market, Price/performance, Flexibility reasons
- Efficient suppliers: IBM, AMCC, Intel, Motorola, ...

Value moving to services and applications

- L3/L4 switches already a commodity
- End2End services require integration across multiple technologies and infrastructures
- Service providers want quick ways of deploying new services

New services via middleware infrastructure

 E.g., policy, security infrastructure, directories, JAVA*/JINI*, CORBA*/DCOM*, ...

Other names and brands may be claimed as the property of others

Where Network Services Live or "edge" is everywhere

Changing notion of "network edge"

- New services deployed throughout the nodes of the network
 - VPNs, intrusion detection
 - QoS-enabled Video streaming and distribution
- Edge services require:
 - More per-packet processing
 - Flexibility to upgrade nodes in the field

IP-based networks are no longer passive packet forwarders

 Must proactively respond to network dynamics to ensure high-availability and security.

Services Increase the Processing Load By Increasing Packet Touch

3000+ Instructions Per Packet

Intel Communications Group Page 8

More Detailed Categorization of Service Processing Requirements

• The characterization is really multi-dimensional (still simplified):

Service	Data	State	Compute
	touch	touch	Requirements
Switching	Low	Low/Med	Low/Med
Routing	Low	Low/Med	Low/Med
QoS	Low/Med	Low/Med	Low/Med
Stateful Firewall	Low/med	Low/Med	Low-High
Proxy Firewall	Med/high	Med	Med
Load Balancing	Med	Med/High	Low/Med
CB Load	High	Med/High	Low/Med
Balance			
VPN	High	Med	High
Virus Detection	High	High	High
IDS	High	High	High

* Crypto processing needs a special processor.

Network processors to the rescue

Intel Communications Group Page 10

OUTLINE

- The Environment
- →• What is a network processor?
 - Intel's Vision and Contribution
 - Technical Challenges
 - Summary

What is a Network Processor (NPU)?

- Flexible Programming Capability
 - Programmability, with rich packet processing features
- Capable of L2-L4+ data processing at wire rates
- Highly integrated Processor
 - Microcoded and/or hardwired acceleration engines
 - Memory subsystem controller(s)
 - Closely coupled with media (integrated or attached)
 - Good data flow management, internal comm's support, and partitioning to enable acceleration
 - Memory latency hiding techniques includes memory controllers

Highly integrated compute, memory and media resources to tackle packet processing problems close to the wire.

Problem Spaces Targeted by NP's

CPE, Edge/Access, and Core applications

- Encapsulation/Decapsulation to fabric/backplane
- Switching/Routing (L2/L3/L4)
- Cell/packet conversion

L4-L7 applications; content and/or flow-based

- Intrusion Detection (IDS) and Proactive monitoring of networks
 - Particularly challenging
 - needs processing of many state elements in parallel,
 - unlike most other networking apps which are more single-path per packet/cell

Why not just use a GHz+ Pentium?

- Network processing is basically a dataflow problem
 - Almost every new packet requires new state
 - uP caches do not hide latency
- Time budgets per cell/packet at high wire speeds are low
 - OC-48 arrival rate = 160ns, OC-192 arrival rate = 35ns, OC-768 arrival rate = 8ns

NPUs can provide acceleration

- Keep stalls on memory and cache to a minimum, and provide specialized compute capabilities
- Offload high-touch portions of applications
 - Header parsing, checksums/CRCs, RegEx string search
- Offload latency-intensive portions to reduce stall time
 - pointer-chasing in hash table lookups, fetch of candidate portion of packet for header parsing
- Offload compute-intensive portions with specialized engines
 - Crypto computation, ATM CRC, packet classification
- Provide efficient system management
 - Buffer management, descriptor management, communications among units, timers, queues, etc.

Intel Communications Group
Page 15

OUTLINE

- The Environment
- What is a network processor?

inta

- →• Intel's Vision and Contribution
 - Technical Challenges
 - Summary

Intel Vision: rich offering of modular networking building blocks

Key Industry Transitions

Ethernet

- 10G emergence in metro
- Provide building blocks at every level
 - Optics, framers, network processors, switch fabrics
- Processing in the Network
 - IXP family of network processors
- End2End view
 - Clients (LAN, wireless, cable modem, xDSL, etc)
 - Enterprise (SAN, switch fabrics)
 - Metro/Core
 - Building blocks for access/edge and core routers

IXP Network Processors

Microengines

- RISC processors optimized for packet processing
- Hardware support for multi-threading
- Embedded StrongARM/Xscale[™]
 - Runs embedded OS and handles exception tasks

Other names and brands may be claimed as the property of others

Intel Communications Group Page 18

IXP Network Processor Family - Multi-Processor Architecture

Parallel Micro-Engines

- Programmable 32-Bit RISC
 Processors (232 MHz->1.4GHz)
 - Independent Control Store
 - Local I/O Transfer Store
- Equal access to all resources
 - SRAM & SDRAM Memory
 - IX Bus & PCI Peripherals
- Non-Blocking Internal Buses
 - > 2X External Bandwidth
 - Eases programming

Parallel Operation Supports Very High Throughput

Current Offering: IXP12xx Network Processor

Intel Communications Group Page 21

2nd Generation Hardware Features: *Performance and Ease of Programming with a Mixed Pipeline*

Ring Buffers

- Allows for Context and Functional Pipeline to talk to each other without horrendous synchronous timing issues
- Use the best type of pipeline for the job
- Next Neighbor Registers and Signaling
 - Allows for single cycle transfer of context to the next logical micro-engine to dramatically improve performance
 - Simple, easy transfer of state
- Distributed data caching within each micro-engine
 - Allows for all threads to keep processing even when multiple threads are accessing the same data
- 1.4Ghz initial micro-engine clock speed
 - Speed is good!

Why Hardware Multi-Threading?

- Ensures efficient use of microengine pipeline
 - Simulation results indicate ~75% of cycles spent waiting for memory
- If single threaded, the equivalent performance would require 24 engines
 - Huge silicon savings
- Keeps micro-engine pipeline active during otherwise idle periods due to memory latency

Four Threads Executing on a Single Microengine

Going to 16 engines, 8 Threads each in IXP2800 (128 HW threads!)

IXA Portability Framework

What is IETF ForCES?

Intel Communications Group Page 25

IXA University Program

- Enable universities around the world to incorporate IXA-based components into research and curriculums:
- Three primary goals:
 - 1. Encourage the use of the IXA in both research and curriculum.
 - 2. Create a community of IXA-related research universities
 - 3. Give students the hands-on experience and training in building and experimenting with real-world network applications using IXA.

For More Information:

www.intel.com/research/university/comm/index.htm

OUTLINE

- The Environment
- What is a network processor?
- Intel's Vision and Contribution
- →• Technical Challenges
 - Summary

Programmability brings flexibility and potential for change

- Migrating Internet to a robust infrastructure when
 - Fragile and vulnerable IP networks vs. robust voice networks
 - Inflexible ASICs have limited capabilities in the fast path with little insight into network health
 - Only insufficient, stale & unreliable statistics provided through old SNMP MIB-II & RMON polling-based mechanisms
- ... The world is moving
 - DoS and DDoS Attacks are on the rise
 - Network worms are devastating networks (eg. Code Red)
 - Highly transactional mission critical applications demand robust networks
 - Streaming applications, SLAs and QoS
 - Dynamic Traffic Engineering

Example Opportunity

- Programmable NPUs for advanced video streaming platforms
 - Handle a variety of streams
 - QoS and Quality adaptation over mobile and wireless
 - Efficient overlays to achieve multipoint streaming independent of underlying infrastructure
 - Dynamic adaptation to attacks, failures

How Network processors can help

- Programmable and secure infrastructure
 - Robust, verifiable code on the network nodes
 - Verifiable transactions among nodes
 - Watchdog and bloodhound nodes distributed in the infrastructure
 - A cooperative model based on information sharing
 - Watch for performance anomalies and trigger reactions
 - Route changes, install new label-switched paths, etc
 - Watch for behavior anomalies in traffic and nodes
 - Squelch the traffic closer to the entry
 - "replace" misbehaving nodes with alternate paths

Example: Proactive, robust video streaming infrastructure

Server Is Targeted for a Distributed TCP SYN Flood Attack

OUTLINE

- Overall Vision
- IXP Architecture
- Software Support
- Technical Challenges
- →• Summary

Summary

"Edge" is everywhere

- Services being deployed at all network nodes
- Dynamic/Rapid service deployment requires data-plane programmability

Network Processors evolving to meet the challenge

- Packet Processing: more instructions per packet
- Evolving functionality: Big advancements this year

Opportunity: Proactive Networks programmable platform

- Quality of Service, Media Processing, Anomoly Detection and Correction
- Rapid/Dynamic deployment: Add new functionality on the fly

Join us in Proactive Networks research efforts

www.intel.com/research/university/comm/index.htm

IXP1200 Programming Book

- By Erik J. Johnson and Aaron R. Kunze List Price: \$49.95 Softcover, 320 Pages ISBN: 097128878X
- Available at Intel Press Booth, Amazon.com, fatbrain.com, and Barnes&Noble.com
- Topics include:
 - Microblocks and microACEs
 - Microengine C
 - Receiving, processing and transmitting packets
 - Data structure and algorithm design
- Ordering: www.intel.com/intelpress/ixp1200

Chapter 2 online: http://www.intel.com/intelpress/ixp1200/descriptions.htm

Intel Communications Group Page 36

The Microengine Coding Guide for the Intel® IXP1200 Network Processor Family

Erik J. Johnson and Aaron R. Kunze

INTEL PRESS

Books by Engineers for Engineers

int_l.