
The Power of Virtual Time for Multimedia Scheduling

Andy Bavier and Larry Peterson
Department of Computer Science, Princeton University

Princeton, NJ 08544
facb,llpg@cs.princeton.edu

Abstract

Many multimedia scheduling algorithms implement fair
sharing of the CPU among processes. However, often a
share of the CPU does not adequately satisfy the timing
constraints of applications such as MPEG video. Several
schedulers have been proposed to address this problem;
each provides CPU shares but also features innovative uses
of virtual time to better support multimedia applications. To
give the reader a flavor of the work in this area, we first com-
pare the mechanisms by which the SMART, BERT, and BVT
algorithms provide better multimedia performance. Second,
and more significantly, we propose a design methodology
for producing multimedia schedulers with provable real-
time behaviors using virtual time. Virtual time abstracts
critical information from a complex mathematical descrip-
tion of the ideal system. This information is then used to
schedule tasks so that the system conforms to its ideal de-
scription in real time. Virtual time is a bridge between the-
ory and code, and this is its power.

1 Introduction

Many multimedia scheduling algorithms implement fair
sharing of the CPU among processes. 1 Recently, sev-
eral scheduling algorithms have been proposed which share
a common premise: while fair sharing produces desir-
able overall system behavior—namely, guaranteed execu-
tion rates and isolation between processes—it does not ad-
equately satisfy the timing constraints of real multimedia
applications like MPEG video decoding. Each of these
new schedulers begins with an algorithm based on virtual
time to provide fair sharing of the CPU, and then tweaks
the algorithm so that it better supports multimedia applica-
tions. In each case, the result is a system that sometimes
diverges from strict fair sharing, but in which multimedia
applications enjoy improved performance. In this paper, we
will consider three such multimedia scheduling algorithms:
SMART [9], BERT [2], and BVT [6].

1Also referred to as proportional sharing.

Our paper is written in two parts. First, we summarize
the goals of each algorithm and describe how it uses virtual
time to meet them. In the process, we hope to convince the
reader that virtual time is a powerful and flexible abstraction
for multimedia scheduling. Our intention is not to perform a
comprehensive survey of scheduling algorithms, but rather
to provide some perspective on this area and to motivate the
problem of designing novel virtual time schedulers. Second,
we propose a design methodology for creating new multi-
media scheduling algorithms; this is the main contribution
of the paper. Algorithms produced by our methodology ma-
nipulate virtual time in order to diverge from fair sharing in
controlled and quantifiable ways. Designers following our
method begin with a mathematical description of the system
(based on modifying the fair queueing fluid model), apply
a simplifying abstraction (virtual time), and then implement
a timestamp-based scheduling algorithm that conforms to
the mathematical description in real time. We believe this
framework gives rise to a family of interesting and powerful
multimedia scheduling algorithms.

2 Background

First, we introduce some language that we will use in the
rest of this paper. A process is an application in the system.
Each process reserves a share or slice of the CPU expressed
in absolute terms, for instance some number of cycles per
second; the period of the reservation is insignificant, as we
will explain later. A process generates a sequence of tasks,
which represent individual chunks of work of known dura-
tion (e.g., a timeslice, or the amount of cycles required to
decode a particular video frame). 2 A task may or may not
have a deadline that represents a soft timing constraint on
the completion of the task. Each process has at most one
task on the ready queue at any time. For simplicity, we as-
sume that there are no synchronization issues between tasks.

Multimedia applications such as video and audio de-
coders are often called soft real-time. Scheduling soft real-

2This definition of “task”, though awkward for those who equate tasks
and processes, is standard in the real-time community.



time applications presents some challenging problems, per-
haps as difficult as those facing hard real-time schedulers.
Soft real-time applications are tolerant of missing some tim-
ing constraints, but often exhibit less deterministic behavior
than hard real-time applications. For example, an MPEG
video decoder requires a variable amount of cycles to meet
a frame’s deadline, depending on whether it is an I, P, or
B frame. Moreover, the longer-term processing require-
ments of the decoder may change too as scenes change in
the video; more detail or action typically requires more cy-
cles to decode. Add to this the fact that soft real-time appli-
cations are expected to run on overloaded systems and even
to adapt their behaviors to use fewer resources. The combi-
nation of overload and dynamic unpredictability gives mul-
timedia scheduling its own unique flavor.

The benefits of CPU fair sharing for multimedia schedul-
ing are widely recognized. The essential characteristics of a
fair sharing scheduling algorithm are:

� Each process reserves a cycle rate—e.g., 1 million
cycles-per-second (Mcps)—and is guaranteed to re-
ceive at least this rate when it has work to do.

� Unused and unallocated capacity is fairly distributed to
active processes in proportion to each process’s reser-
vation. An active process that receives extra cycles be-
yond its reservation is not charged for them.

� An idle process cannot “save credits” to use when it
becomes active. Unused share is simply lost.

� The guarantees made to processes provide isolation be-
tween them—each process gets its rate no matter what
any other process does.

The guarantees and isolation of fair sharing can lead to
desirable behaviors in multimedia systems. For the most
part, a share of the CPU is what an MPEG video decoder
wants—typically it requires roughly the same number of
cycles to decode its 30 frames each second. Fair sharing
isolates processes so that if the requirements of the MPEG
video decoder increase, it will receive extra cycles only if it
can do so without impacting another process. If the cycles
are not available (i.e., the CPU is overloaded), then the user
has the opportunity to redistribute shares to applications in
order to achieve the overall system behavior that she wants.
This combination of power and flexibility is not available
with real-time scheduling algorithms such as EDF or rate
monotonic.

Fair sharing has its drawbacks for scheduling multime-
dia applications as well. An MPEG decoder process can re-
quire five times as many cycles to decode an I frame as a B
frame [1]. If the video makes a reservation based on its peak
requirement, such a conservative share may force the ad-
mission controller to reject processes even though there are

usually plenty of cycles available. Conversely, if the video
reserves its average rate, it may miss deadlines on expen-
sive I and P frames. These frames cannot be discarded and
must be decoded in a timely fashion, because later frames
reference them. The system can delay playback to smooth
the variability in frame processing requirements (it closely
resembles network jitter), but this can introduce too much
latency for interactive video. In summary, fair sharing is
very good for scheduling multimedia, but not perfect.

Many fair sharing algorithms have the concept of virtual
time at their heart [4, 5, 10, 11]. Algorithms that imple-
ment fair sharing using virtual time are based on a theo-
retical fluid model that describes the ideal behavior of the
system. From this model, an algorithm is constructed that
schedules individual tasks. The key to tying together the
theoretical model and the actual implementation is virtual
time; it provides the means of creating a scheduler to run
the system in a way that conforms to the ideal model. Next
we give some background on the fluid model, a fair sharing
algorithm implementation, and virtual time.

The fair queueing fluid model [10] provides a mathe-
matical description of the instantaneous execution rates of
processes, based on their reserved shares, in an ideal sys-
tem. One way to think of the model is as a cycle-by-cycle
weighted round robin scheduling of processes. This means
that over any interval, no matter how small, a process with
N times the share of another receives exactly N times the
cycles. The fluid model gives us a powerful tool for de-
scribing fair sharing. In the fluid model, a running process
always receives at least its reserved share; since the fluid
model is work-conserving, the process additionally receives
a proportion of the excess system share due to unreserved
capacity or idle processes. Therefore, the fluid model de-
scribes the ideal real-time behavior of a fair sharing system.

Weighted Fair Queueing (WFQ) [5] is the canonical im-
plementation of a fair sharing algorithm using virtual time.
The goal of WFQ is to approximate the behavior described
by the fluid model in the running system. WFQ assigns
virtual timestamps to the individual tasks of each process,
based on the process’s reserved CPU share and previous ac-
tivity, and then executes the task set in order of increasing
timestamps. The result is a system in which processes fairly
share the CPU within certain limits. Algorithms created by
our scheduler design framework of Section 4 operate in just
this way. However, as we aim to show, virtual time is much
more than simply a mechanism for implementing fair shar-
ing.

In a system running WFQ, over any interval of time, a
process may actually receive slightly more or less service in
WFQ than it does in the ideal fluid model. The service that
a process receives in the real system before it is due in the
model is called lead, and service received after it is due is



known as lag. 3 A powerful result that has been established
for WFQ is that its lag is bounded—by zero for a preemptive
scheduler, and by the duration of the longest allowable task
for a nonpreemptive one. The same result has been shown
for many other virtual-time-based fair sharing algorithms.
Its importance is that it quantifies how a process receives its
share in real time, making virtual time algorithms attractive
for real-time scheduling.

Finally, virtual time is the abstraction that ties together
the ideal fluid model description of the system and the al-
gorithm that approximates it. The intuition behind virtual
time is that it represents a virtual resource. Consider a pro-
cess P that reserves a rate R on the CPU. As the process
submits work, each piece of work receives a virtual times-
tamp which represents its actual finish time if the process
had a dedicated CPU of rate R. Recall that one feature
of a fair sharing algorithm is that an idle process loses its
share and cannot save it to use later. If we think of a pro-
cess’s share as a virtual CPU, this makes sense—leaving
your CPU idle for a while does not make it faster. We will
define virtual time formally in Section 4.2, and show how it
abstracts information critical for real-time scheduling from
the fluid model. Fully explaining the relationship between
the fluid model, virtual time, and the real-time behavior of
the resulting scheduling algorithm is one of the main con-
tributions of this paper.

3 Comparison

In this section we compare three multimedia schedulers:
SMART, BERT, and BVT. Each of these algorithms uses
virtual time to provide processes with CPU shares, yet each
departs from strict fair sharing in an innovative way. The
discussion has a dual purpose. The first is to highlight how
the three algorithms use virtual time, in order to give a fla-
vor of the approaches that have been tried. The second is,
through examining the successes and limitations of the al-
gorithms, to motivate the problem: how do you design a
scheduler to provide particular kinds of service in real time
to multimedia applications?

3.1 SMART

SMART (a Scheduler for Multimedia And Real-Time
applications) was historically the first of the three sched-
ulers, and no doubt it influenced the design of the other two.
The SMART scheduler provides CPU shares to processes
while striving to meet as many real-time deadlines as possi-
ble in a general-purpose OS. SMART stems from the obser-
vation that, while a CPU share is fine for most conventional

3Lag can also be described in relation to a process’s virtual rate; our
usage is slightly stronger, as we will show later.

processes, it is not exactly what a multimedia process like
an MPEG video decoder needs from the system; the decoder
would like to have the system satisfy its deadlines, not sim-
ply give it a share. The goal of SMART is to satisfy the
deadlines of multimedia processes in the general context of
fair sharing.

SMART contains a rich mixture of features, but we will
focus on one in particular: the Earliest Deadline First (EDF)
reordering of a set of real-time tasks. All processes in
SMART have both a priority and a share, and individual
real-time tasks also have deadlines. Individual tasks are
assigned virtual timestamps based on the process share in
the usual way. A task’s priority (from its process) and vir-
tual timestamp together form a value tuple which is used to
rank tasks; the task with the higher priority is said to have
a higher value tuple, and at the same priority the task with
the lower timestamp has a higher tuple. The core of the
SMART task selection algorithm is as follows:

1. If the task with the highest value tuple is a conventional
task, run that.

2. If the task with the highest value tuple is a real-time
task, create a candidate set of all real-time tasks with
a higher value tuple than the highest-ranked conven-
tional task.

3. From the candidate set, create a work schedule as fol-
lows. In order of decreasing value tuples, insert each
task into an EDF schedule only if doing so preserves
the feasibility of the schedule. That is, test to make
sure that inserting a task into the schedule will not
cause a previously inserted tasks to miss its deadline.

4. Execute the resulting work schedule EDF.

For our purposes, the most interesting feature of SMART
is the EDF reordering of the candidate set at steps (3)
and (4)—this is SMART’s mechanism for better support-
ing multimedia applications in the context of fair sharing. 4

SMART performs this reordering because EDF is an opti-
mal scheduling algorithm: it will meet all deadlines if it
is possible to meet them. In order to make sure that it is
possible, SMART performs a feasibility test prior to insert-
ing each task from the candidate set into the work schedule.
A successful insertion means that the task is guaranteed to
meet its deadline regardless of its share or timestamp.

SMART inserts tasks into the work schedule in order of
decreasing value tuple, which among tasks of the same pri-
ority means in order of increasing virtual timestamps. When
a task T is inserted into the schedule, only tasks with higher

4A multimedia process could be run at high priority, but that provides
no isolation between it and most other processes. For this reason, the de-
signers of SMART envisioned that high priority would be used sparingly.



value tuples have already been inserted—these tasks were
ahead of T in the ready queue to begin with. Therefore,
task T is given an opportunity to move up in the queue if
it can do so without consequences; likewise, lower-ranking
tasks are permitted to cut in front of T only if T will still
meet its deadline. Note that if T cannot be inserted, then it
would not have met its deadline without reordering, because
it would have executed after all of the tasks already in the
work schedule. The important point is that no task in the
candidate set is worse off than if reordering had not been
done.

The use of virtual timestamps in the creation of an EDF
work schedule allows SMART to improve on the separation
between processes provided by fair sharing. Conventional
tasks are not affected, while real-time tasks stand an equal or
better chance of meeting their deadlines. Though it does not
explicitly manipulate virtual time, SMART uses it creatively
as a tool in multimedia scheduling.

3.2 BERT

The BERT (Best Effort and Real-Time) scheduler is
designed to schedule a mix of real-time and best effort
(i.e., conventional) processes in Scout, a communication-
oriented OS. BERT’s focus is on producing good system
behavior despite the problems of overload and changing ap-
plication requirements that are widespread in multimedia
systems. Like SMART, BERT reasons that a best effort pro-
cess wants a CPU share; on the other hand, a multimedia
process would like its deadlines met, regardless of the share
needed to do so. The system should try to satisfy the re-
quirements of both kinds of processes. When these require-
ments conflict, as they are bound to do in an overloaded
system, the importance of processes to the user should be
used to resolve conflicts in an intuitive way. The idea that
the user should explicitly yet easily specify how the system
distributes resources is central to BERT.

BERT comprises a virtual-time-based scheduling algo-
rithm, a simple policy framework, and a minimal user inter-
face. The scheduling algorithm combines the WF2Q+ fair
sharing algorithm [3] and a mechanism called stealing. The
policy framework divides all processes into two priority lev-
els, important and unimportant, and defines how processes
in each class interact with those in other classes; its main
feature is that an important real-time process can steal cy-
cles from unimportant processes to meet its deadlines. The
user interface includes a button on the frame of each ap-
plication window that the user clicks to indicate that she
considers the application important. In this discussion we
will focus primarily on BERT’s scheduling algorithm, and
particularly on the stealing mechanism.

The goal of the BERT scheduler is to provide multimedia
processes with a deadline-oriented QoS while giving con-

ventional processes fair shares of the CPU. To accomplish
this, BERT exploits the relationship between virtual and real
time implied by the bounded lag of WFQ: if a task’s dead-
line falls after the lag bound of the WFQ algorithm, then
the deadline will be met because task will have completed
running by then. Furthermore, BERT uses stealing to give
an important real-time task extra cycles to meet its deadline
when its share is too small. Stealing manipulates the fluid
model and virtual time to explicitly redistribute the reserved
service of unimportant tasks to an important real-time task.
BERT leverages the theoretical underpinnings of WFQ to
satisfy the requirements of both real-time and conventional
processes.

Stealing is based on the insight that a virtual CPU can be
manipulated like a real one. Recall that virtual time itself is
a mechanism for multiplexing processes onto the real CPU
by providing each with the abstraction of a virtual processor
to which it has exclusive access. BERT simply takes away a
process’s exclusive right to this virtual CPU. Through steal-
ing, BERT multiplexes a real-time task that needs extra cy-
cles to meet its deadline onto the virtual CPU of a less im-
portant process. Stealing introduces a dynamic dimension
into static fair sharing of the CPU.

The stealing mechanism is spread across several levels
of fair sharing theory and implementation. First, it mathe-
matically describes how the virtual multiplexing takes place
within the context of the fluid model. Second, the steal-
ing mechanism calculates how virtual time flows for the
affected processes in the modified fluid model—one pro-
cess gets delayed a little (in virtual time) while the other
speeds up. Third, the timestamps of tasks belonging to
the processes are modified to reflect the changes in virtual
time. Stealing uses virtual time to track changes in the fluid
model, resulting in tasks receiving new timestamps. This
theme will be expanded upon in Section 4.

It may appear that BERT, through stealing, violates the
isolation between processes provided by fair sharing; in fact
it does not. BERT preserves isolation, since a task can steal
a specific amount of cycles from another only when explic-
itly allowed to do so. Instead, BERT redefines the descrip-
tion itself of how processes are isolated from one another by
dynamically altering the fluid model.

It is crucial that stealing preserves the relationship be-
tween virtual and real time on which BERT depends. We
give an informal proof that it does so in Section 4, when
we present our scheduler design framework. The important
point is that dynamically modifying the ideal fluid model
description of the system, as BERT does, and tracking the
changes using virtual time, can control the real-time behav-
ior of processes. Stealing forms a prime example of the
flexibility and power of virtual time.



3.3 BVT

The Borrowed Virtual Time (BVT) scheduler is targeted
for a diverse range of applications (e.g., multimedia, inter-
active, batch) on a general-purpose OS. BVT’s insight is
that both interactive and multimedia applications are latency
sensitive—dispatching their tasks earlier rather than later
can improve the overall system performance. BVT does
not take multimedia tasks’ deadlines into account when
scheduling them. BVT focuses on long-term CPU sharing
while supporting the varying latency requirements of appli-
cations.

BVT supports latency sensitive processes with a mech-
anism called warping. Some processes provide a warp
factor, which represents a constant that is subtracted from
the virtual timestamps of its tasks. When warping is acti-
vated for a process (via a syscall), the effective timestamp
of its task is lowered by the warp factor, causing the task
to move up in the ready queue and run sooner than it other-
wise would have. Larger warp factors correspond to lower-
latency dispatches than smaller values.

Warping a task can introduce latency for other tasks (in-
cluding warped ones) and so the BVT scheduler provides
additional parameters to warping: a warp time limit and an
unwarp time requirement for each thread. The warp time
limit governs the maximum amount of time that a thread
can run warped; the unwarp time requirement is the time
the thread must then wait before warping again. Warping a
process within these constraints forms the means by which
BVT provides better performance to multimedia applica-
tions. The authors of [6] show experimentally that BVT can
be effective in reducing task dispatch latency while gener-
ally providing fair sharing of the CPU.

It is difficult to reconcile warping with the notion of vir-
tual time as representing a virtual CPU. Subtracting a warp
factor from a task’s timestamp seems to be like saying, do
this yesterday—it has no coherent meaning. Instead, BVT
uses virtual time as a simple mechanism for ordering tasks:
warping a task moves it up in the ready queue, and this re-
duces its dispatch latency. As a result, it is not clear ex-
actly what kinds of behaviors BVT can provide. For in-
stance, how do multiple warped tasks interact with each
other? How does a user set the various warp parameters for
all applications in order to produce a desired overall sys-
tem behavior? More research on BVT may be necessary to
answer these questions.

The BVT mechanism of warping is simple and intuitive.
Warping a task in virtual time subtracts a constant from its
timestamp, which causes it to run sooner within a frame-
work of long-term fair sharing. It seems likely that with
judicious choice of the warp parameters, BVT can provide
tasks with shares of the CPU while reducing latency for
multimedia and interactive applications.

3.4 Contributions

To conclude our discussion of these three schedulers, we
compare the contributions each has made to the idea of cre-
atively using virtual time in multimedia scheduling.

First, the idea at the heart of all three schedulers—to be-
gin with fair sharing and virtual time, and then try to better
support multimedia—derives from SMART. SMART has
also been influential in framing the discussion of other as-
pects of multimedia scheduling not discussed here, such as
application feedback and user interfaces. However, it ap-
pears that SMART’s EDF reordering of the candidate set
offers only minor benefits in many cases. Since the can-
didate set is composed of real-time tasks that are adjacent
in the ready queue, a system with many conventional tasks
will probably have very small sets and thus not be able to
benefit a great deal from reordering. Still, SMART should
be recognized as laying the groundwork in this area.

Second, BERT’s use of virtual time departs most radi-
cally from fair sharing. BERT makes no effort to return
“stolen” cycles to processes, reasoning that since a more
important process has taken them from a less important one,
this is the right thing to do. The point is that BERT demon-
strates the flexibility of virtual time by using it to go beyond
providing shares of the CPU, while at the same time main-
taining provable real-time behavior. We will say more about
this in the next section.

Third, the warping mechanism of BVT is in some ways
the most attractive of the three. It is simple to grasp and
straightforward to implement in any WFQ-like scheduler.
However, because warping one process affects the latency
of others in ways that have not yet been quantified, our un-
derstanding of what BVT actually offers is weak.

4 Design Methodology

The three schedulers just described provide examples of
the diverse ways that virtual time is being stretched in multi-
media schedulers. Next we propose a methodology for cre-
ating future virtual time schedulers. Virtual time can form
the basis of complex and dynamic schedulers with provable
real-time properties. We combine mathematical description,
theory, and virtual time to provide a framework for imple-
menting such schedulers.

The key to our framework is tracking a fluid model rep-
resentation of the system using virtual time. Though this
technique has clearly been used to design schedulers (e.g.,
WFQ), we believe that a general theory of virtual time has
not been elaborated before. In fact, the BERT algorithm,
which is the prime example of a scheduler designed in ac-
cordance with our theory, actually preceded it. First we cre-
ated and implemented BERT and convinced ourselves that



it worked; the insight about why it worked came later, and
led to our methodology. We realized that the steps we took
to create BERT could be used to produce any number of
real-time scheduling algorithms.

To create a new scheduling algorithm using our method,
the designer follows four steps:

1. Mathematically describe changes to how processes ex-
ecute in the fair queueing fluid model

2. Track the fluid model changes using virtual time

3. Modify the virtual timestamps of affected tasks

4. Execute the task set in order of increasing stamps

The rest of this section explores what is involved at each
step. We use the BERT algorithm as an example of how
to use our method, and we intersperse our description with
the explanation of why it works. We conclude with some
ideas for new algorithms that could be developed using our
framework.

4.1 Fluid Model

The Fair Queueing Fluid Model (FQFM for short) forms
the foundation of fair sharing algorithms like Weighted Fair
Queueing. As outlined in Section 2, the model describes
the real-time behavior of an ideal, fluid system in which
each process receives at least its reserved rate whenever it
is active. The FQFM can be given a concise mathematical
definition as follows. Let the n processes in the system be
indexed from 1 to n. Each process generates a sequence of
tasks, which represent chunks of work of known duration.
Let Pi be the ith process and Ti;m be the mth task it gener-
ates. Pi reserves a cycle rate Ri that can be expressed in any
units, for example, cycles per second. Let C i be the total cy-
cles that process Pi has received so far. Also, let RCPU be
the actual processor rate, and let A be the set containing the
indices of all currently active processes. At all times t, the
fluid model defines the instantaneous execution rates of the
current task belonging to Pi:

dCi

dt
=

RiP
k2ARk

RCPU (1)

The above simply states that the instantaneous execution
rate of a process is the proportion of the CPU equal to its re-
served rate over the sum of the rates of all active processes.
Since admission control ensures that the sum of all rates
never exceeds the CPU rate, each running process will al-
ways receive at least its reserved rate in the model. Note
that the units of the reservation (e.g., cycles per second) do
not matter since the model describes an instantaneous exe-
cution rate.

BERT provides an example of how to dynamically mod-
ify the fluid model description of the system. The FQFM
provides the base of the BERT algorithm, but BERT de-
parts from the FQFM when one process steals from another.
BERT describes stealing at the lowest level in terms of mod-
ifying the flow of the fluid model: conceptually, stealing
pauses one process in the fluid model and gives its alloca-
tion to another for a predefined interval. Formally, this is
expressed as follows. When process Pi steals from process
Pj , the cycles that Pj would receive during the steal are
diverted to Pi. If Pj was idle at the start of stealing, it is
considered active (i.e., j 2 A) while the stealing is going
on. During the stealing interval:

dCi

dt
=

Ri +RjP
k2A Rk

RCPU (2)

dCj

dt
= 0 (3)

It is significant that BERT defines stealing in the con-
text of the FQFM. The reason is that a running fluid model
provides a feasibility test for a particular real-time system,
somewhat like SMART performs when it reorders the can-
didate set. In the model, an individual task completes at a
specific time based on its instantaneous execution rate. This
means that the fluid model describes a way that the system
could schedule tasks to meet a certain set of “deadlines”,
namely their finish times in the fluid model. Modifying the
fluid model, as BERT does, changes the finish times of in-
dividual tasks while preserving the descriptive power of the
model. This may seem almost trivial, but it is an important
point for real-time scheduling.

4.2 Virtual Time

The fluid model provides an ideal description of how the
system could schedule tasks to meet a set of deadlines using
infinitely fine preemption. The problem is, we cannot know
what these deadlines are in advance (though we can put an
upper bound on a task’s finish time by assuming that the task
receives no more than its reserved rate). Since the instanta-
neous cycle rate of a task depends on the set of active pro-
cesses, we must know what processes will be active during
its execution in order to know what rate it will get. How-
ever, in a real system the set of active processes changes
unpredictably, for instance as processes enter and leave the
system or block on I/O events. The value of virtual time is
that it abstracts this problem away.

Virtual time itself flows at a rate proportional to the rate
of the active processes. This allows the virtual rate of a
process (i.e., the rate expressed in terms of virtual time) to
be constant and equal to the rate the process has reserved.
That is, virtual time lets us provide a simplified description



of the system in which each process Pi runs on its own CPU
of speed Ri. So, if v is the current virtual time, then virtual
time flows at the rate:

dv

dt
=

RCPUP
k2ARk

(4)

We can combine Eqs. 1 and 4 to express the rate of pro-
cess Pi in virtual time:

dCi

dv
= Ri (5)

The significance of the virtual time definition in Eq. 4 is
that it allows us to abstract away the active process set from
the fluid model. Since the virtual rate of a process always
equals its reservation, the virtual finish times of its tasks
depend only on the tasks’ durations and so can be known
in advance. Furthermore, virtual time maintains a very im-
portant feature of the fluid model description. If all pro-
cesses actually had their own dedicated CPUs, individual
tasks might finish at different times than in the fluid model
but they would still finish in the same order. In other words,
if task A has a larger virtual finish time than task B, then
A will finish after B in the fluid model as well. The virtual
time abstraction simplifies the fluid model while preserving
critical information.

The BERT scheduler uses virtual time to track the effects
of its modifications to the fluid model. Stealing changes the
virtual finish times of tasks in an easily quantifiable way.
During an interval when process Pi steals from Pj , the vir-
tual rate of Pi is Ri + Rj , while the virtual rate of Pj is
0. From this, it is simple to calculate the new virtual finish
times of the current tasks belonging to the two processes. If
the stealing interval is of duration �, and Ti;m is the current
task of Pi, then the virtual finish time of the task moves up
by �Rj=Ri. Likewise, if Tj;n is the current task of Pj , then
its virtual finish time moves back by �. We will see in the
next section how this information is used.

4.3 Modifying Virtual Timestamps

Algorithms based on virtual time (such as WFQ) assign
a timestamp to each task representing its virtual finish time
(VFT) in the fluid model. In WFQ, if v0 is the virtual time
that a task Ti;m begins executing in the fluid model, and the
duration (in cycles) of the task is di;m, then the timestamp
assigned to the task is given by:

V FT (Ti;m) = v0 +
di;m

Ri

(6)

If an algorithm dynamically alters the fluid model de-
scription, as BERT does, then this can change the virtual
finish time of a task that had previously been assigned a

timestamp. In this case, it is necessary to change the times-
tamp of the affected task so that the ready list continues to
reflect the fluid model.

When one process steals from another, the virtual finish
times of tasks are affected as described at the end of Sec-
tion 4.2. BERT modifies the timestamps of tasks in the sys-
tem accordingly—however, care must be taken when doing
so. The reason is that some tasks which are still “execut-
ing” in the fluid model may in reality have already run, and
so are no longer in the system. It is not possible to modify
the virtual timestamp of such a task and so it must not be
stolen from.

Rather than checking whether or not a task is in the sys-
tem before stealing from it, BERT’s approach is to rely on
the known workahead bound of a process. The workahead
indicates the amount of a process’s reservation that can be
received in the real system in advance of the fluid model;
in Section 5.1, we show why this quantity is bounded for
BERT. Prior to stealing, BERT calculates the amount of cy-
cles that can be stolen from a process before a particular
deadline. Since the workahead bound represents cycles that
a process may have already received, BERT subtracts them
from the total. Though conservative, this allows BERT to
safely steal from processes without having to track whether
particular tasks have already run.

4.4 Execution Order

Virtual time algorithms execute the task set in order of
increasing timestamps. We have outlined the progress of
a virtual time algorithm through the fluid model definition,
tracking the model using virtual time, and assigning times-
tamps. At this point we tie it all together and show how
running tasks by increasing timestamps leads to a real-time
algorithm that provably conforms to its fluid model descrip-
tion.

Figueira and Pasquale establish two very powerful re-
sults in [7]. First, if the eligible task sequence is schedulable
under any policy, then it is schedulable under preemptive
deadline-ordered scheduling—for our purposes, deadline-
oriented scheduling is the same as Earliest Deadline First,
or EDF. Second, this same task sequence is Æ-schedulable
under nonpreemptive deadline-ordered scheduling. Simply
stated, these results mean that if it is possible to meet all
deadlines using some scheduling discipline, then preemp-
tive EDF will meet them, and nonpreemptive EDF will miss
them by no more than a quantity Æ, which is the runtime of
the longest task in the system.

With these results in hand, the significance of the steps
in our method becomes clear. Executing tasks by increas-
ing timestamps runs them in the same order as their fluid
model deadlines, and so is equivalent to EDF. By definition,
the fluid model itself shows that there exists a method, al-



beit impractical, of scheduling the tasks to meet these dead-
lines. Therefore, preemptively scheduling by virtual times-
tamps meets all fluid model deadlines, and nonpreemptive
scheduling misses them by no more than the Æ described
above. That is, the preemptive algorithm never lags its fluid
model description, and the nonpreemptive algorithm has its
lag bounded by Æ. In either case, the actual running system
conforms to its ideal fluid model description in real time in
a quantifiable way.

The progress of a process in the fluid model never lags
the virtual CPU of the process. The reason is that Eq. 4
shows that dv=dt � 1 when the sum of all reserved rates is
less than the rate of the CPU. As long as this is true, then vir-
tual time (showing progress on the virtual CPU) flows faster
than real time; this means that, for any interval of time, the
cycles received by the process in the fluid model are always
at least what it would receive on its dedicated CPU. There-
fore, since we have established lag bounds relative to the
fluid model, the same lag bounds apply to the virtual CPU
description of a process’s progress. This result is at least as
powerful as those which bound an algorithm’s lag relative
to virtual time.

BERT depends entirely on this conformity for its effec-
tiveness. As originally described in [2], BERT is a nonpre-
emptive scheduling algorithm. When BERT needs to meet
the time constraint of a video frame, it first assumes that the
decoder process will receive no more than its reserved rate
in the fluid model and calculates a conservative fluid model
finish time for the frame. It then steals enough capacity from
less important tasks to ensure that the latest fluid model fin-
ish time for the task is at least Æ before the timing constraint.
With this accomplished, BERT can guarantee that the con-
straint will be met.

4.5 Future Directions

The design method outlined in this section can poten-
tially produce a variety of new real-time scheduling algo-
rithms. Below we briefly discuss a few that we have imple-
mented or will explore as future work.

Latency-sensitive tasks in BERT Our framework allows
us to combine different service models together in the
same scheduler while preserving real-time behaviors.
We can currently support latency-sensitive tasks (e.g.,
the mouse) by stealing to finish some small distance
in the future. This allows us to make no reservation
for the mouse, and also to control which processes are
affected by moving the mouse—the mouse steals only
from unimportant processes, and so for example leaves
an important video unaffected.

Many-tiered BERT In its original description, BERT con-
tained only two priority levels: important and unimpor-

tant. This could be extended to multiple levels by ex-
panding the fluid model description of how processes
on different tiers interact.

No starvation BERT During a stealing interval, BERT can
steal 100% of a process’s allocation. This means an
important process can starve an unimportant one. It is
possible to modify the fluid model description of steal-
ing so that only a fraction of a process’s allocation can
be stolen—say, 80%. This would produce an scheduler
in which unimportant processes always make progress
even when stolen from.

Alternative fluid models In the fair queueing fluid model,
a process reserves a constant rate on the CPU. The
key feature of a fluid model is that the sum of in-
stantaneous process execution rates never exceeds the
real rate of the CPU—it is not necessary that these
rates are always constant. It should be possible to for-
mulate a fluid model in which processes can reserve
non-constant functions—e.g., linear functions or even
waves. For example, a periodic process that needed
low dispatch latency could reserve a square wave that
represented its requirements. This has something of
the flavor of [8], in which the authors show that packets
in a single stream could have different weights and still
be serviced in real time. The important point is that a
process could reserve a very exotic pattern of CPU ser-
vice while the system maintained the isolation between
processes that is a main feature of fair sharing. There
are many details to be worked out; for instance, we
may need to use calculus to figure out a task’s times-
tamp, and admission control in such a system could
get pretty complicated. On the other hand, there may
be alternate formulations of virtual time which can be
used to simplify more complex fluid models. At any
rate our framework may point the way to entirely new
and sophisticated process service models.

5 Implementation

In this section we discuss how two common features im-
plemented by many fair sharing algorithms—fluid model
task eligibility and virtual time estimation—can be incor-
porated into algorithms created using our framework. In
addition, we quantify how these mechanisms affect the re-
lationship between the fluid model description and the re-
sulting dynamic system.

5.1 Task Eligibility

It is well known that, in a system running Weighted Fair
Queueing, tasks can finish executing long before they have



completed in the fluid model [4]. When a task receives cy-
cles before they are due in the model, it is called lead (in
contrast to lag) or workahead. Some fair sharing algorithms
(e.g., WF2Q+) incorporate a concept of task eligibility to re-
duce the possible lead of tasks and make the resulting sys-
tem conform more closely to the fluid model. In such an
algorithm, only an eligible task may be scheduled to run;
a task is eligible if it is currently receiving service in the
fluid model. This means that a task with a higher timestamp
may run even though an ineligible task with a lower times-
tamp is present in the system. The result is a system with
a provably much smaller bound on the lead of tasks. Task
eligibility can be used with an algorithm produced by our
framework as well.

The results of Figueira and Pasquale mentioned in Sec-
tion 4.4 refer to the “eligible task sequence”. It must be
possible to schedule tasks to meet their deadlines based on
the times that they become eligible to run, using whatever
definition of eligibility the system desires, and not based
simply on their arrival times. In WFQ, all tasks are eligible
from the moment they arrive, and the fluid model describes
how to schedule them to meet their fluid model deadlines.
However, note that the descriptive power of the fluid model
applies to an algorithm using the fair sharing notion of task
eligibility as well, since these algorithms define an eligible
task as one that is receiving service in the fluid model. That
is, by definition the fluid model shows how to schedule the
eligible task sequence. The only task sequence for which
the fluid model would not be valid is one in which an ineli-
gible task is executing in the model.

The fair sharing definition of task eligibility can be use-
ful to multimedia scheduling algorithms. For instance, the
BERT algorithm uses it to bound a process’s workahead,
which is then taken into account when stealing. If P i is a
process, Ti;m is its current task, di;m is the duration (in cy-
cles) of the task, and � is the amount of time stolen from the
task, then the maximum lead for the task is bounded by:

lead(Ti;m) � di;m(
1

Ri

�
1

RCPU

) + � (7)

This is easy to see. A task is not eligible to run until it has
begun service in the fluid model. This means that the task
will receive its first cycle in the real system no sooner than
in the model. In the fluid model, it is possible that the task
only receives its reserved rate Ri; at this rate, and if � is the
amount of time stolen from the task while it is running, then
its last cycle will be received at t0+(di;m=Ri)+�. However,
a running task actually receives the rate of the whole CPU.
So if the task starts to run in the real system as soon as it
is eligible, and it is not preempted, then it will complete at
t0+(di;m=RCPU ). Eq. 7 represents the difference between
when the last cycle is received in the fluid model and the
real system. It should be straightforward to obtain similar

results for other algorithms devised using our framework.

5.2 Estimating Virtual Time

According to Eq. 6, the system must know v0, the virtual
time at which a task begins service (called the virtual start
time), in order to assign the correct timestamp to the task.
For an active process, this is simply the virtual finish time of
the previous task. On the other hand, for an idle process it is
the “current” virtual time when the process becomes active.
It is necessary to know, what virtual time is it?

The Weighted Fair Queueing algorithm simulates the
fluid model so that it can always know the exact virtual time.
However, the simulator is complicated to implement and
computationally expensive to run. More recent fair sharing
algorithms instead estimate the current virtual time. For ex-
ample, WF2Q+ takes the following approach. Eq. 4 implies
that, as long as admission control prevents processes from
reserving more than the total CPU rate, then dv=dt � 1—
that is, virtual time flows at least as quickly as clock time.
Also, the actual virtual time can be no less than the the
smallest virtual start time of a task in the system—the fluid
model is work-conserving, so at least one task in the system
must be running in the model. Therefore, WF2Q+ updates
its global virtual time by the elapsed clock time, or up to
the smallest virtual start time of a task, whichever is greater.
This method results in an estimate which is either accurate
or slightly conservative.

Virtual time estimation brings up an interesting issue that
we plan to investigate as future work. Namely, how can we
understand the way that introducing a new mechanism into
WFQ (such as estimating virtual time, or perhaps warping
in BVT) affects the real-time behavior of the system? A
promising approach may be to describe how the mechanism
affects the execution of tasks in the fluid model, and then to
use our framework to reason about the resulting system.

For example, consider the effect of a conservative virtual
time estimate on an idle process that becomes active. If the
estimate is Æ less than the actual virtual time, then newly ac-
tive process Pi will receive RiÆ cycles more than it would
have if the virtual time had been accurate. An analogy with
BERT’s stealing may help us understand what is going on.
It seems as if Pi gets to immediately steal from all active
processes, for an interval of duration (R iÆ)=RCPU . This
pushes back all other task finish times in the fluid model by
this amount. However, unlike BERT’s stealing, no times-
tamps are changed; the cycles “stolen” by Pi correspond to
a part of its share that was fairly distributed to the active
processes when Pi was idle. That is, the effect of underes-
timating the virtual time is that a newly active process gets
to take back some of the cycles that were borrowed from it
when it was idle.

Additionally, virtual time estimation in conjunction with



task eligibility (see Section 5.1) can affect the lag of tasks
relative to the model. Typically, the eligibility check for a
task involves comparing its virtual start time with the cur-
rent virtual time; if the task’s virtual start time has already
passed, it is eligible. Underestimating the virtual time by Æ
means that a task may become eligible up to Æ later than it
should. It seems that delaying the point that a task is eligi-
ble to run could push its finish time back by a correspond-
ing amount. Worse yet, the fluid model no longer provides a
description of this system, since an ineligible task (from the
system’s standpoint) is executing in the model. However,
the solution may be to formulate an alternative fluid model
in which the affected tasks begin running Æ later (in virtual
time) than in the standard model. This modified fluid model
would accurately describe the system, and so we could de-
termine the system’s real-time behavior by referring to the
model.

For multimedia scheduling, the practical effects of un-
derestimating the virtual time appear to be minimal. In the
case of an idle process becoming active, no process actually
receives less than its reserved share—the cycles “stolen”
from a process Pi by a newly activated process Pj corre-
spond to excess capacity received by Pi when Pj was idle.
For example, the real-time behavior of BERT is not affected
because it calculates the maximum finish time for a real-
time task using the worst-case assumption that it will re-
ceive only its reserved rate. Idle processes becoming active
can affect the actual, but not the worst-case, finish time of
the task. Furthermore, when we combine estimation with
eligibility, we appear to get a system in which eligible tasks
can steal a few cycles from tasks that are not yet eligible
due to the error in our estimation. However, since all tasks
are affected by the error, and every task eventually becomes
eligible, it seems likely that it may all even out; in fact,
WF2Q+ combines both mechanisms and has been shown to
have its lag bounded relative to the virtual CPU [3]. We
plan to investigate the relationship between such mecha-
nisms and our design framework in the future.

6 Conclusions

We have proposed a design methodology for creating
complex and dynamic multimedia scheduling algorithms
which go beyond fair sharing in their behaviors. An al-
gorithm designed using our framework starts with an ideal
mathematical description of the system based on modifying
the standard fair queueing fluid model, applies the abstrac-
tion of virtual time to this description, assigns timestamps
to tasks according to their virtual finish times, and runs the
resulting system in order of increasing stamps. The system
scheduled by such an algorithm conforms to its ideal de-
scription in real-time in quantifiable ways. Our framework

allows designers to create new and interesting multimedia
algorithms that maintain the guarantees and isolation which
are hallmarks of fair sharing.

The key to our framework is virtual time. Virtual time
simplifies the ideal system into a form that can be tracked
using virtual timestamps—it transforms the mathematical
description of a complex system into an algorithm. Virtual
time is a bridge between theory and code, and this is its
power.

References

[1] A. Bavier, B. Montz, and L. Peterson. Predicting
MPEG execution times. In Proceedings of the SIGMET-
RICS/PERFORMANCE ’98 Symposium, pages 131–140,
June 1998.

[2] A. Bavier, L. Peterson, and D. Mosberger. BERT: A sched-
uler for best effort and realtime tasks. Technical Report TR-
602-99, Department of Computer Science, Princeton Univer-
sity, Mar. 1999.

[3] J. C. R. Bennett and H. Zhang. Hierarchical packet fair
queueing algorithms. In Proceedings of the SIGCOMM
’96 Symposium, pages 143–156, Palo Alto, CA, Aug. 1996.
ACM.

[4] J. C. R. Bennett and H. Zhang. WF2Q: worst-case fair
weighted fair queueing. In Proceedings of IEEE INFO-
COM’96, pages 120–128, San Francisco, CA, Mar. 1996.

[5] A. Demers, S. Keshav, and S. Shenker. Analysis and sim-
ulation of a fair queuing algorithm. In Proceedings of the
SIGCOMM ’89 Symposium, pages 1–12, Sept. 1989.

[6] K. J. Duda and D. R. Cheriton. Borrowed-virtual-time (BVT)
scheduling: supporting latency-sensitive threads in a general-
purpose scheduler. In Proceedings of the 17th ACM Sympo-
sium on Operating System Principles, Dec. 1999.

[7] N. R. Figueira and J. Paquale. A schedulability condition for
deadline-ordered service disciplines. ACM Transactions on
Networking, 5(2):232–244, Apr. 1997.

[8] P. Goyal and H. M. Vin. Generalized guaranteed rate
scheduling algorithms: a framework. ACM Transactions on
Networking, 5(4):561–571, Aug. 1997.

[9] J. Nieh and M. Lam. The design, implementation and evalua-
tion of SMART: A scheduler for multimedia applications. In
Proceedings of the Sixteenth Symposium on Operating Sys-
tem Principles, pages 184–197, Oct. 1997.

[10] A. K. Parekh and R. G. Gallager. A generalized processor
sharing approach to flow control in integrated services net-
works: the single-node case. ACM Transactions on Network-
ing, 1(3):344–357, June 1993.

[11] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. K. Baruah, J. E.
Gehrke, and C. G. Plaxton. A proportional share resource
allocation algorithm for real-time, time-shared systems. In
Proceedings of the 17th IEEE Real-Time Systems Sympo-
sium, pages 288–299, Dec. 1996.


