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Abstract—

Congestion control tries to answer the question: “At
what rate should a sender transmit data under current net-
work conditions?” While answering this question is suf-
ficient to maximize the goodput of traditional bulk data
streams, emerging multimedia applications generate het-
erogeneous data streams where different frames have dif-
ferent quality of service requirements in terms of priority,
deadlines, and inter-frame dependence. Consequently, the
goodput of a multimedia stream depends not only on an-
swering the above question, but also the question “Which
packets should the sender transmit given its current trans-
mission rate?” In this paper, we make the case that the
“goodput control” mechanisms that answer this question
should be considered as a critical component of future mul-
timedia transport protocols.

We present an objective definition of goodput at the
transport layer, and show that optimizing this goodput
function has exponential complexity in the general case.
We then present a set of simple online packet dropping al-
gorithms that can be used at the sender side in order to ap-
proximate the optimum within a bounded ratio, and show
that our goodput control mechanisms improve theapplica-
tion level reception quality for the flow.

I. INTRODUCTION

Emerging multimedia applications generate data
streams that have significantly more complex character-
istics than traditional bulk data applications. Consider a
multimedia streaming application that requires the trans-
mission of an MPEG video stream from a server to a
client. The server and client exchange control packets
that must be delivered reliably, and the MPEG video
stream contains I-, P-, and B-frames that are prioritized
and possibly deadline bounded. Further, there are depen-
dencies across the frames: a P-frame depends on the pre-
ceding I-frame, while a B-frame depends on the preced-
ing and following non B-frames. To summarize, multi-
media applications generate heterogeneous data streams
wherein frames/packets have diverse quality of service
(QoS) requirements in terms of reliability, deadline, util-
ity, and inter-frame dependency.

What are the special requirements that heterogeneous

data streams impose on the underlying data transport
mechanisms? In traditional bulk data transfer applica-
tions such as ftp, the transport must provide rate control
and support reliable and sequenced delivery of packets –
all packets are equally important, and the timeliness of
delivery is not critical. Therefore the transport protocol
must determine the sustainable sending rate for a con-
nection (i.e., perform rate control), and then send packets
in sequence while making sure that lost packets are re-
transmitted (i.e., enforce reliability). However, for the
heterogeneous data streams under consideration, timeli-
ness of data delivery may be critical – packets that arrive
after their deadline are useless at the receiver. There-
fore, the data transport mechanisms must perform rate
control as before, but send only the “most useful” pack-
ets that can be delivered at the sustainable sending rate.
In other words, the transport must transmit the high-
est utility packets that satisfy their deadline and depen-
dency requirements in order to maximize the “goodput”
(or broadly speaking, aggregate utility) of the heteroge-
neous data stream at the receiver.Our companion HPF
paper provides the platform in which we can evalulate the
goodput algorithms.

Comparing the requirements of “homogeneous” and
“heterogeneous” data streams, we see that the data trans-
port mechanisms must consider two questions:

1. At what ratemust the sender transmit packets given
the current network conditions? This is the standard rate
control problem, and has been extensively addressed for
both reliable and unreliable data streams in related liter-
ature [3] [5] [7] [10]. In this work, we use a rate control
mechanism that is TCP-friendly and stable, similar to the
work in [5], and we will not address this issue further.
2. Which packetsshould the sender transmit, given the
current transmission rate and packets in the send buffer?
While the answer to this question is straightforward for
homogeneous data streams (transmit the next packet in
sequence), it is non-trivial for heterogeneous data streams
because it depends on the relative values of the ap-
plication sending rate and the transport sending rate,
the QoS requirements of the packets in the buffer, and



 

which packets have already been transmitted (in order
to take into account the dependency requirements across
frames). In short, different packets in the same stream
have different utilities, and the transport needs to imple-
ment a set of mechanisms for selecting packets for trans-
mission such that the aggregate utility of the received
packets at the receiver is maximized.
We call this set of mechanisms goodput controlin this
paper, and make the case that data transport for multime-
dia streams must provide goodput control as an integral
part of the systems support for multimedia application
designers.

It is now widely accepted that rate control must be a
part of transport protocols designed to support both reli-
able and unreliable flows. Most current approaches for
multimedia system design call for multimedia applica-
tions to sit on top of rate-controlled unreliable transport,
receive rate and delay feedback periodically, and then
adapt within the application to the dynamics of the con-
nection.

In this paper, we consider a different model. We con-
cur with conventional wisdom that the application best
knows the QoS metrics of its frames. Thus, we believe
that the responsibility of assigning QoS requirements in
terms of reliability, utility, deadline, and dependency con-
straints must remain with the application. On the other
hand, once the QoS requirements of a frame are speci-
fied by the application, we argue that the “goodput con-
trol” mechanisms which maximize the perceived utility
of the stream at the receiver can be best implemented in
the data transport/middleware outside of the application.
This approach provides for a clean separation between
application-specific QoS policies (which are set and con-
trolled by the application) and the general mechanisms
that are used to implement these QoS policies (which are
provided by the data transport).

In this paper, we make the case for considering good-
put control as a fundamental component of multimedia
transport as opposed to a part of the application, mo-
tivated by three reasons. First, it makes writing multi-
media applications much simpler, because the applica-
tion designer only needs to think about the policy-level
issues and not the mechanisms for achieving effective
adaptation to rate/delay fluctuations. Second, it makes
the modeling of, and structured reasoning about, good-
put control easier if these mechanisms constitute a sepa-
rate component and are not wrapped into the application.
Third, fine-grained interaction between the rate control
and goodput control can improve the aggregate utility of

the transmitted stream under network dynamics. Our ini-
tial experimentation shows that maximizing the objective
goodput control metric at the transport level also leads
to improved perceptual quality of the data stream at the
application level.

The rest of the paper is organized as follows. Section II
presents the network model and the framework for good-
put control. Section III describes the model for optimal
goodput control and a set of simple buffer management
mechanisms that approximate the optimal model. Sec-
tion IV evaluates the goodput control mechanisms for
three different types of application-level coding schemes:
motion JPEG and MPEG. Section V discusses some un-
resolved issues and concludes the paper.

II. MODEL AND FRAMEWORK
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Fig. 1. Framework for Goodput Control. Figure (a) positions
goodput control in the protocol stack. Figure (b) shows the
key components of goodput control. The goodput control
mechanisms described in this paper provide QoS-aware
packet dropping in the sender side buffer.

Figure 1.a positions goodput control in context. As
a part of generic data transport, we consider three func-
tions: framing, goodput control, and rate control. The ap-
plication deals with frames and frame-specific QoS poli-
cies. The framing component provides frame-to-packet
segmentation/reassembly, translation of frame-to-packet
QoS, and partial reliability[6]. The rate control com-
ponent provides estimates of the rate and delay for the
connection. Goodput control bridges the potential rate
mismatch between the application sending rate and the
transport sending rate by determining which packets to
send and which packets to drop at the source. The first
order of business is to determine what the goodput con-
trol mechanisms are, and how they can effectively use the
application-specified QoS parameters of frames/packets
in order to maximized the aggregate received utility at
the receiver. The second order of business is to determine
how to structure the three components, i.e. which com-
ponents belong to the transport layer and which belong



 

to middleware. For simplicity of discussion, we will ini-
tially assume that goodput control is a part of a transport
protocol such as HPF[6], and then revisit the structural
trade-offs in Section 5.

In the rest of this work, we will assume the follow-
ing: (a) a higher layer already has performed the frame-
to-packet translation (so the goodput control component
deals only with packets) and (b) a lower layer performs
rate control and provides the goodput control component
with short term and long term running averages of rate
and round trip time estimates. In all our simulations
and analytical evaluation, we use the standard additive
increase-multiplicative decrease rate control algorithm,
similar to the implementation in RAP [5], [6]. Figure
1.b. shows the three aspects to goodput control: buffer
management at the sender, rate and delay feedback, and
buffer management at the receiver. Packets flow into the
sender buffer at a rate of rapp send, and are drained at
a rate of rinst1. The rate control component provides
the sender side buffer manager with the short-term av-
erage rate rsavg , the long-term average rate rlavg , and the
smoothed round trip time rtt. If the application is adap-
tive, then it may periodically probe the lower layer for
rlavg and adjust rapp send accordingly. The buffer size at
the sender is B. At the receiver, packets arrive into the
receiver buffer and are drained from the receiver buffer
at a rate of rapp recv. Our focus is on the set of packet
dropping mechanisms at the sender buffer that bridge the
potential rate mismatch between the application and the
network in a way that maximizes the goodput of the flow,
which we now formally describe below.

A. Conditional Utility and the Goodput Control Objec-
tive

Let us consider a multimedia application that gener-
ates a multi-resolution image/video stream. Each packet
i is associated with a “utility” u(i) and length l(i). For
applications with real-time constraints, each packet may
be associated with a “deadline” d(i) by which it must be
delivered. Finally, there are dependencies between data
packets. In other words, a packet i is useful at the re-
ceiver only if the receiver also receives the set of packets
D(i). We abstract these QoS characteristics of a packet
by means of a predicted conditional utility v(i) at the
sender, defined as follows:

v(i) =

8
><
>:

0 9 packet j 2 D(i), j is not received at the receiver

0 packet i is predicted to miss its deadline d(i)

u(i) otherwise
1All rates are time dependent, though we drop the time dependence

for convenience of notation.

Conditional utility captures the requirements that a
packet must be received before its deadline2, and that all
the packets on which it depends must also be received.
Given this definition of conditional utility, we define the
“goodput” G[t1; t2] of a heterogeneous data stream over
a time window [t1; t2] as

G =
X

i2S[t1;t2]

v(i); (1)

where S[t1; t2] is the sequence of packets that is trans-
mitted in the time window. The goodput control problem
is thus an optimization problem: maximizeG[t1; t2] for
a desired time window[t1; t2] such that

X

i2S[t1;t2]

l(i) �
t2X

t=t1

r(t) ��t (2)

where the rater(t) adapts in discrete time intervals of
�t, a packet is eligible for transmission only after it ar-
rives at the send buffer, and the sequenceS[t1; t2] is a
subsequence of the sequence of transmissions from the
application layer. In essence, the goal is to choose the
sequence of transmissions S[t1; t2] in a way that max-
imizes the aggregate predicted conditional utility at the
sender.

Note that in this problem formulation, the actual condi-
tional utility may differ from predicted condictional util-
ity because we do not consider losses in the network in
the ideal model (i.e. every packet that is selected for
transmission is optimistically expected to be received at
its destination)3 . Of course, in the practical instantiations
of the mechanisms and in evaluation, we do not make this
assumption.

Let us now consider how the utility and depen-
dency relations are specified by the application. u

is an application-specific utility function, and D is
an application-specific dependency relationship between
frames. The precise mapping between the application-
level perceptual usefulness of a frame and its utility as-
signment is beyond the scope of the paper. However, in
the evaluation section, we use the peak signal to noise
ratio (PSNR) metric for assigning per-frame utility. De-
pendency across frames is inherent to the structure of the

2Decision is made on the sender side based on the estimated RTT
and estimated flow rate. The deviation of the actual delay from esti-
mated RTT is ignored in the theoretical analysis but considered in the
simulation
3While it is possible to account for network losses using a multiple

description-based forward error correction below the goodput control
layer, in this work we assume an idealized network model that does
not drop packets so long as the sender does not violate its rate esti-
mate.



 

coding scheme which is faithfully reflected in the inter-
packet dependency. We consider two coding schemes
in our evaluation to demonstrate the generality of the
goodput control work: Motion JPEG and MPEG. We see
in our evaluation that maximizing the objective goodput
function in the transport achieves higher PSNR on the re-
ceiver side and the perceptual quality of the stream in the
application is improved.

III. GOODPUT CONTROL MECHANISMS

In Section 2, we presented a high-level overview of the
optimization criterion, viz. selectS[t1; t2] to maximizeP

i2S[t1;t2] v(i) such that the transmission of the packets
in S does not violate the rate bound of the connection.In
this section, we first explore the detailed ideal model of
goodput control; then we show that goodput maximiza-
tion with deadline and dependency constraints is expo-
nential in nature; then we investigate a simple greedy
solution that achieves the best-known competitive ratio
with respect to the optimum. The result of our work is
that we propose a very simple set of online packet drop-
ping mechanisms that effectively approximate goodput
optimization.

A. Ideal Goodput Control

Each packet i has a utility u(i), length l(i), deadline
d(i), and dependency relationship D(i), where D(i) is
a set of preceding packets on which it depends. Let us
first consider a simple offline version of the goodput con-
trol problem wherein the task is to determine at time t1
which packets from the queue to select for transmission
in a time window [t1; t2], with fixed connection rate of
r at time in [t1; t2] and no further arrivals after t1 4.
First, let us simplify the problem further, and assume that
8i; d(i) =1 and D(i) = �. Then this problem reduces
to the 0-1 Knapsack problem, and has a well-known dy-
namic programming solution in O(NQ � r � (t2 � t1))
time where NQ is the number of packets in the sender
buffer Q. The key point to note is that the 0-1 Knap-
sack problem satisfies the optimal substructure property
(i.e. partial solutions of the optimal solution are also opti-
mal) – hence, dynamic programming is a valid approach
for solving this problem. Let us now generalize this ap-
proach to account for deadlines and dependencies.

We define the recursive relation for the goodput control

4This is different from the schedulingalgorithm in the sense that
the packets selected here are still transmitted in the order they are in
the queue while the packets in the ordinary schedulingalgorithm can
be transmitted out of order.

problem as follows:

G[Q] = maxjfvS(Q�fj�g)(j) +G[Q� fjg]g (3)

j
� = arg maxjfvS(Q�fj�g)(j) +G[Q� fjg]g (4)

S(Q) = fj�g [ S(Q� fj�g) (5)

feasible S(Q� fj�g)) feasible S(Q) (6)

where G[Q] is the optimal goodput considering the set of
packets Q, S(Q) is the subsequence of packets selected
for transmission from the set of packets Q, and vS(i) is
the conditional utility of packet i given that a sequence S
has already been selected for transmission.

Essentially, the above dynamic programming problem
setup yields a correct solution if the recursive relation-
ship for G[Q] and the feasibility condition for S(Q) hold.
Under such circumstances, we can obtain a simple poly-
nomial time optimal solution for goodput.

Unfortunately, when we introduce deadlines, then the
feasibility condition may be violated because adding a
packet j� to the transmission sequence in any iteration
of the solution may violate the deadline of some previ-
ously chosen packet in S(Q � fj�g) that follows j� in
the sequence of transmissions.

Further, when we introduce dependencies, the optimal
substructure property may be violated because S(Q �
fjg) may depend on whether j is selected or not in
S(Q). In other words, adding a packet to the transmis-
sion sequence may change the optimal transmission sub-
sequence chosen thus far, because it can enable the trans-
mission of other packets that were not hitherto consid-
ered.

To summarize, the optimal substructure property is vi-
olated when we introduce both deadline and dependency
constraints, and consequently the solution moves from a
polynomial time to an exponential time computation.

B. Goodput Control Mechanisms under Some Simplifi-
cations

Given the fact that the goodput maximization algo-
rithm is exponential without restrictions on how the u(i),
l(i), d(i) and D(i) are specified, we investigate what the
time complexity of the goodput maximization algorithm
would be if the u(i), l(i), d(i) and D(i) observe some
simple relations.

We represent the packet dependency via the digraph
Gr = (V;E) where the nodes in set V are all the packets
in the queue Q and ordered pair (i; j) 2 E if packet j



 

depends on packet i. Packet j depends on packet i ex-
plicitly or implicitly if there exists a path from i to j and
no such k such that (k; i) 2 E and (j; k) 2 E.

Let P (i) be the set of nodes which depends on node i
explicitly or implicitly and w(i) = u(i)=l(i) be the “util-
ity per bit” of packet I .

Proposition III.1: If packet i has w(i) larger than that
of any packets depending on itself, then

w(i) >

P
k2SP (i) u(k)P
k2SP (i) l(k)

; (7)

the average utility per bit for any subset SP (i) of P (i).

When the deadline of the packets in the queue is so
large that the deadline constraint can be omitted, if the al-
location of the utility of the packets satisfies Proposition
III.1, breath-first search can produce the maximal good-
put sequence in polynomial times.

C. Practical Goodput Control Mechanisms - Selecting
Algorithm

In this section we proposed a greedy algorithm to ap-
proximate the optimal result whose output has the lower
bound of log(maxU

minU
� maxl

minl
). The algorithm has no as-

sumption about the utility function and deadline.

1. Let Set I  fall the packets which don’t depend on
other packetsg.
2. Pick the packet P (i) in I with largest normalized util-
ity w(i) and satisfy the deadline constrict.
3. Add the packets whose dependent packet are already
selected to the set I .
4. Remove the packets which miss the deadline and all
their dependency from I .
5. If I is empty, the algorithm terminates. Otherwise it
goes to Step 2.

The idea is always to pick the packet with largest nor-
malized utility w(i) under the constraints that it is within
its deadline bound and its transmission won’t make the
packets already picked miss the deadline. Those packets
already picked have higher w(i) than itself.

D. Practical Goodput Control Mechanisms - Dropping
Algorithm

The algorithm proposed before is not suitable for on-
line execution because it assumes no further arrival.
Here we propose an online dropping algorithm, which
is equivalent to the previous algorithm, but is more
amenable to online adaptation. It can be shown that the
output sequences of the two algorithms are the same for
the offline scenario[15]. We consider a suite of 4 packet-
dropping algorithms here.

1. Discard packets that are not “useful” to the receiver.
(a) Deadline drop: Discard a packet that is predicted

to violate its deadline by the time it is received at the
receiver.
(b) Dependency drop: Discard a packet for which the

sender has already discarded some packet on which it de-
pends (e.g. discard a B-frame packet whose preceding
P-frame has been dropped).
2. Preferentially discard lower utility packets in favor of
sending higher utility packets.
(a) Utility drop: When the sender buffer is full, discard

queued packets with lower normalized utility in favor of
incoming packets with higher normalized utility, where
we define “normalized utility” of packet i as u(i)=l(i)
(i.e. utility per-bit).
(b) Anticipated deadline drop: If a packet with higher

normalized utility is predicted to miss its deadline, but
discarding one or more packets with lower normalized
utility preceding it in the sender buffer will enable the
packet to meet its deadline, then discard those lower nor-
malized utility packets.

E. Anticipated deadline drop

Consider the case of a packet stream with multiple nor-
malized utilities and packet deadlines. By assigning the
different priority to the different normalized utilities, the
system can be simplified to a priority system when the
normalized utilities are discrete and finite. In this exam-
ple we consider a three-level priority system.

Suppose a high priority packet is predicted to miss its
deadline, but there are enough lower priority packets pre-
ceding it such that dropping them will cause the high
priority packet to make its deadline, then the anticipated
deadline drop mechanism will delete the preceding lower
priority packets to make room for the following high pri-
ority packet. Figure 2 illustrates a sequence of scenarios,
and Figure 3 specifies the pseudocode.

Anticipated deadline drop can be accomplished with a
two-pass algorithm through the send queue. In the first
pass, we scan the queue in order to determine how many
packets in each layer must be dropped to make room for
following higher priority packets to meet their deadlines.
In the second pass, we drop the designated number of
packets from the head of each priority level.

The space complexity of this algorithm is O(p) for p
priority levels, since we need to maintain two arrays –
sent[level]and dropped[level]– in the algorithm in Fig-
ure 3. Anticipated deadline drop is invoked under two
circumstances: (a) when a packet is enqueued, and (b)
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Fig. 2. Anticipated Deadline Drop. Figure (a) shows the data
structures. Each packet is labeled with its deadline. The
slack denotes the available slack for the packet (slack of -1
causes either the packet to be dropped, or anticipated dead-
line drop). We also show the updated state of the send[]
and dropped[] arrays as we traverse the queue. Figures (b),
(c), and (d) show the evolution of the queue and the actions
of the anticipated deadline drop as four packets with dif-
ferent priority and deadline arrive.

when the connection parameters have changed beyond
a threshold value since the last invocation of the antici-
pated deadline drop. The time complexity for case (a) is
O(p) (since we only need to perform the two-pass algo-
rithm for the incoming packet), and the time complexity
for case (b) is O(np).

F. Dependency drop

As we have described before, frames in a heteroge-
neous data stream may have application-specific depen-
dencies. At the receiver, a frame cannot be usefully re-
ceived unless the frames on which it depends have also
been usefully received. The motivation for dependency

sent[levels] : number of packets sent
for this priority level

dropped[levels] : number of packets dropped
for this priority level

total : total number of packets sent
max_level : number of priority levels

FIRST PASS:

while (p)
allow = (p.deadline - now - rtt) / rate
before = sum(i: p.level to max_level) sent[i] ; head drop
if total <= allowed ; enough slack, accept

sent[p.level] ++
total ++

else
if before < total - allowed ; not enough slack, discard

mark p
else ; must discard lower priority packets to accept

to_drop = total - allowed ; number of lower priority
j = max_level ; packets to drop
while (to_drop > 0)

drop_at_level -= min{sent[j], to_drop}
to_drop -= drop_at_level
sent[j] -= drop_at_level
dropped[j] += drop_at_level
j --

sent[p.level] ++
total = allowed + 1 ; equal to total-to_drop+1

next p

SECOND PASS:

total_drops = sum(i:0 to levels) dropped[i]
while (total_drops > 0)

if dropped[p.level] > 0 and p unmarked
mark p
dropped[p.level] --
total_drops --

next p

Fig. 3. Pseudocode for the Anticipated Deadline Drop Mech-
anism.

drop is to discard the packets of a frame at source if the
sender knows that any of the frames on which this frame
depends have not been usefully received at the receiver.

Providing dependency drop requires the transport pro-
tocol to understand the in-built application structure of
the data stream, and the description of dependency drop
in this section is necessarily more closely coupled to the
specific transport protocol implementation as compared
to previous mechanisms.

One of the more interesting uses of inter-frame depen-
dency is to emulate layering. A “layer” in our model
is simply a dependency chain. If the application does not
want to adapt frequently, it can simple “chain” a sequence
of frames that belong to a “layer”. Once a frame in the
layer is dropped, subsequent frames in the layer will also
be dropped. The chain must be broken periodically to
enable the “join” experiment for the layer. Using this ap-
proach, we can emulate layering and bound the frequency
of adaptation for applications that do not wish to have fre-
quent quality fluctuations. It turns out that we can emu-
late finer granularity adaptation than layering. For exam-
ple, by chaining every nth frame in a layer (and having n
such chains), we can essentially enforce adaptation at the
granularity of 1=nth of a layer. Thus, dependency allows
the application to control the frequency and granularity



 

of adaptation.

IV. SIMULATION EVALUATION

We now present an evaluation of the goodput control
mechanisms through simulation in NS2. First, we present
two adaptation mechanisms that are commonly used in
the practice. That will further motivate the necessity of
goodput control. Second, we present the results for Pro-
gressive Motion JPEG and characterize the utility among
packets within one frame. Third, using the MPEG trace
from Bellcore[14], we show an example to characterize
the utility across different frames in one group of pic-
ture(GOP). Finally, we illustrate the relationship between
deadline and buffer size and show network characteristic
does not affect the functionality of goodput control.

A. Goodput Control versus Application-Level Adapta-
tion
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Fig. 4. Complex Multi-hop Link Topology.

In this experiment, we first present the performance
figures for goodput control, then compare goodput con-
trol with application-level adaptation, and understand the
trade-offs involved.

We present the simulation results for goodput con-
trol in a randomly generated network configuration com-
posed of 7 backbone links with different link bandwidths
and latencies, and 11 connections as shown in Figure 4.
Note that the goodput control mechanisms are not af-
fected by the network characteristics as we will discuss
in the Section IV-C.

All the 11 application senders send MPEG traffic at
constant bit rate with 16 frames per GOP. Each GOP has
one I frame, three P frames, and 12 B frames with one
packet per frame. P frames depend on preceding I frames
while B frames depend on preceding and following non
B frames. The aggregate rate for each sender is 1.2Mbps.
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Fig. 5. Goodput Control versus AIPD Adaptive Ap-
plication over UDP.
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Fig. 6. Goodput Control versus AIMD Adaptive Ap-
plication over UDP.

11 CBR connections share the available bandwidth as fol-
lows. The bandwidth of S4 is limited by the bandwidth
of the global bottleneck link from node 5 to R4. Con-
nections S1, S2, S3, S5, and S6 share the link 4-5 with
constrained connection S4. On the other hand, connec-
tion S9 and S11 share the link 2-4 with connection S6.
Since the bandwidth of S6 was constrained by link 4-5,
connections S9 and S11 shared the remaining bandwidth
which makes the R9 and R11 receive all the CBR frames.
Connections S7 and S8 share link 1-2, which is the bot-
tleneck link on their paths. Since S10 shares the link 2-3
only with connection S7 and S8, whose transmission rate
where already constrained by link 1-2, it gets all the re-
maining bandwidth of link 2-3.

Table 1 shows the results for the experiment using
goodput control mechanisms and the additive increase-
multiplicative decrease rate control algorithm. Note that,
in column 5, we introduce a notion of utility called “use-
ful frame”. Because of the inter-frame dependency in
MPEG, utility can be defined to be the number of de-



 

Sender Expected Observed Frame Useful PSNR
� deadline priority I P B miss

rate rate sent frame
� (db) drop drop frame frame frame deadline

�

1 1000 1147.98 28684 28675 32.34 5 1376 1879 5638 21181 0
2 1000 1057.63 26596 26328 31.61 452 3071 1839 5477 19064 36
3 1000 960.73 24008 23882 30.88 227 5958 1863 5540 16603 29
4 900 888.27 22309 22178 30.53 188 7554 1858 5522 14838 106
5 1000 899.76 22571 22412 30.57 431 6836 1865 5492 15263 10
6 1000 877.07 22050 21779 30.35 477 7403 1850 5463 14616 19
7 1000 1011.26 25147 24880 31.34 284 4808 1865 5584 17469 51
8 1000 988.45 25086 24730 31.29 301 4862 1862 5578 17399 46
9 1200 1200.03 29990 29989 32.72 0 0 1875 5623 22492 0
10 1200 1200.95 30004 30001 32.72 0 0 1876 5625 22503 0
11 1200 1199.70 29978 29977 32.72 0 0 1874 5621 22483 0

TABLE I
Results of experiment on topology in Figure . (The superscript * is measured at receiver side. The rate has unit Kbps.)

codable frames that satisfy the dependency constraint at
the receiver. As we can see in the column 5 and 6, it is
closely related to PSNR value. Thus, we use the “useful
frame” as a looser notion of metrics to measure the qual-
ity. From this point on, we present MPEG test in term of
useful frame instead of PSNR for simplicity.

To see the impact of goodput control, we also perform
the same experiment, but with two other application be-
haviors: (a) adaptive application with additive increase
and loss proportional decrease(AIPD): the application
will change its CBR rate based on monitoring the con-
nection progress, and send at the peak estimated rate, and
(b) adaptive application with additive increase and multi-
plicative decrease(AIMD): the application will change its
CBR rate according to an additive increase multiplicative
decrease algorithm based on monitoring the connection
progress. Figure 5 compares goodput control versus the
former scenario, while Figure 6 compares goodput con-
trol versus the latter scenario. In both cases, we test with
different adaptation intervals for the application.

From Figure 5, we see two results:

1. The adaptive application is far more aggressive (in a
non-TCP friendly manner) and sends 17% to 5% more
packets than the goodput control case, but useful frames
received is 21.5% to 4.6% less than that in goodput con-
trol case. Specifically, the goodput control application
sends 11.8% more I frames, and 11.4% more P frames,
even for the best case adaptation. In words, sending more
does not help the application itself.
2. The total number of packets received at receiver is
similar but the goodput can be significantly different de-
pending on the presence of goodput control mechanisms
at the sender. Further, for the same number of received
packets, the adaptive application sends a lot more pack-
ets, which would choke other TCP flows (the rate control
algorithm used in goodput control is TCP friendly [5]).

From Figure 6, we see two results:

1. The adaptive application in this case behaves in a TCP
friendly manner but it is highly susceptible to the adap-
tive interval. The applications will underutilize the chan-
nel after the multiplicative decrease and take serval adap-
tation periods to recover. Even in the best case, the good-
put control application sends 13.2% more I frames and
14.3% more P frames. The aggregate number of useful
received frames with goodput control is 5.4% more.
2. Shorter adaptation intervals enable the application to
become more responsive to the dynamics of the network.
In fact, goodput control outperforms adaptive applica-
tions precisely because of the same reason – it is closely
coupled with the rate adaptation component and has the
same granularity of adaptation.

B. Test Results for Progressive Motion JPEG and MPEG
Trace
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Fig. 7. Simulation Topology with two switches.

For the simulations in this section, we encode a foot-
ball sequence (grayscale, 342x240, 31 frames per sec-
ond) using Progressive Motion JPEG. The resulting data
is fragmented into 13 packets with payload size of 1000
bytes. In the other words, the traffic is about 3.6Mbps.
We send this traffic over the topology as shown in Fig-
ures 7. The bottleneck bandwidth is 55Mbps with la-
tency 30ms. There are one Pareto and one Exponential
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Fig. 8. Plot for buffer=420 deadline=2.0sec and delay=30ms.

ON/OFF source among 20 senders. The mean for both
the ON and OFF period are 10ms. During the ON pe-
riod, CBR with rate 5Mbps is sent.

We measure the mean and variance of PSNR over 18
senders/receiver pairs. In Figure 8.a, it demonstrates the
perfect world with smart transport and priority network.
In Figure 8.b, we do not assume network has priority drop
and we show slightly quality degradation for 0.7db. In
Figures 8.c, the average PSNR is lower for 1.7% because
the deadline drop does not delete the deadline-violated
frames in order to save bandwidth for other packets in
the buffer, ie. the anticipated drop. This further delays
the packets in the sender buffer and reduces usefulness of
received frame. In Figures 8.d, except that the PSNR is
lower for 2.7%, there is another important source for the
quality degradation. The difference in PSNR for any two
consecutive frames is much higher because there is no
priority drop to remove less important data to make room
for higher utility packets. Therefore, users will perceive
jittery quality even receivers receive the same amount of
packets. This behavior can also be characterized quanti-
tatively by the variance of the PSNR as well. The vari-
ance increases from 51.1% between case b and d. Fi-
nally, in Figure 8.e, without smart transport and network
support, the quality is dramatically degraded. The PSNR
drops from 24.056 to 22.830 while the variance increases
from 1.891 to 3.884. Note that in all 5 examples shown

here, the network rate stay approximate the same. This
validates the arguments that congestion control is of the
interest to the network but it does not optimize the appli-
cation goodput.

In Figure 8.f, we use the MPEG trace from Bellcore.
The sequence consists 12 frames in one GOP with the
240X352 (Luminance - Y) and 120X176 (Crominance -
U & V). The frame rate is 24 frames per second. We
again show the five scenarios as that in MPJPEG case ex-
cept that we use the useful frame as a metrics to charac-
terize the quality. In MPJPEG, there is no inter-frame de-
pendency. The quality is purely depending on the packets
received for that frame. Showing quality by PSNR can
best represent the perceived quality.

In contrast, in MPEG, inter-frame dependency plays
such an important role in the perceived quality. Thus,
“number of useful frames received” captures perfectly
the utility and dependency in MPEG streams. As shown
in Figure 8.f, between bar (1) and bar (2), the use-
ful frame decreases slightly(3.31%) from perfect case to
goodput control case. However, there is literally no dif-
ference in received I and P frames. In bar (5), useful
frames drop dramatically. Especially, number of I frames
received drop more than 50% that lead to poor quality.

C. Summary on Evaluation of Goodput Control

We preformed a series of simulations to understand
the behavior of goodput control. We summarize our ex-
preiences below:

1. The size of sender buffer has a threshold value at
which dropping mechanisms change from priority drop
to deadline drop. The threshold value is approximately
equal to the “deadline bandwidth” product.
2. Without synchronized clocks and symmetric links, the
goodput control module does not know the one way la-
tency. Thus, we can not expect the forward latency to be
50% of the smoothed round trip time(srtt). We vary the
decision making point from 50% to 120% of the round
trip time, and our simulations show that using 90% of
the srtt can avoid almost all of the deadline violations at
receiver. In fact, using one srtt seems to be a good engi-
neering choice.
3. We vary the delay and buffer size of the bottleneck
link in Figure 7, and these preliminary results seem to
indicate that goodput control is not very sensitive to those
link characteristics.

The interesting observation is that goodput control can
improve the performance while at the same time reducing
the programming complexity of applications. However,



  

we caution the reader against assuming that these im-
provements come for free: goodput control mechanisms
incur computational overhead as we mentioned in the end
of Section III-E.

V. RELATED WORK AND SUMMARY

In related literature, there have typically been two
other ways of supporting such streams. In the first ap-
proach, the application implements all the smarts for
supporting the multimedia stream, and uses UDP as the
transport. Specifically, the application must determine
the available sending rate, manage deadlines, send only
the highest priority packets that can be sustained at the
available rate, and send complete frames (or throw away
partially received frames). The advantage of this ap-
proach is that the application has complete control over
what is sent over the network. The disadvantages are
that the sending rate estimation can become quite inac-
curate at the user layer, the mechanisms for adaptation
must be replicated for each application, and packets once
sent cannot be “recalled” even if they are still queued at
the sender (e.g. even if they have violated their deadline).
In fact, writing an efficient multimedia application that
adapts effectively to network dynamics is a very chal-
lenging task[13].

In the second approach, applications use transport pro-
tocols such as RTP [12] or RAP [5], that are designed
to support real-time multimedia flows. In this case, the
transport protocol performs the connection rate adap-
tation and allows the application to adapt over longer
timescales to long-term rate (which is desirable to pre-
vent the quality fluctuation at the application layer), and
buffers packets due to the potential mismatch between
the application sending rate and the connection sending
rate. Among related work, most multimedia transport
protocols provide rate adaptation and buffering, but not
priority dropping and deadline dropping. The problem
with this approach is that in the absence of deadline drop-
ping and priority dropping, once the application has sent
packets for transmission, it cannot “recall” them, and due
to the buffering in the transport layer (and coarser rate
adaptation in the application), this problem is more pro-
nounced than in the previous approach.

The problems with the first two approaches motivate
the need for goodput control. Basically, we see from the
second approach that it is a good thing to perform rate
adaptation at two levels – the transport adapts the connec-
tion sending rate to short-term variations in the network
resources while the application adapts the application-
sending rate only to long-term variations in the network

resources. However, in addition to the issue of rate adap-
tation, which answers the question of “how much to
send”, there is also the critical issue of “what to send”.
The shortcomings of the first two approaches can be di-
rectly traced to the fact that the sender sent packets that
were useless at the receiver, thereby wasting the connec-
tion capacity, and possibly further delaying other packets.
This motivates a close coupling between rate control and
goodput control at the transport layer.
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