A Centralized, Tree-Based Approach to Network Repair Service for
Multicast Streaming Media

Dan Rubenstein
Computer Science Department
UMass Amherst
drubenst@cs.umass.edu

Abstract

IP multicast provides best-effort delivery. Packets encounter
variable delays and may be lost because of transmission er-
rors and buffer overflows. Real-time multimedia streaming
services require that most packets arrive at the receivers
prior to an application deadline. Multicast quality on the
current Internet is often inadequate for these applications.
We have solved this problem by placing repair servers in-
side the network. The repair servers recover missing packets
by communicating with each other, then re-multicast the re-
paired stream to nearby receivers on a new address. Multi-
cast reception in the constrained area is typically much bet-
ter than in the wide area Internet.

In this paper we address the problem of constructing a
repair graph. The repair graph shows which repair servers
each repair server communicates with to recover missing
messages. Our objectiveswhen constructing this graph con-
flict with each other. We want high reliability: every repair
server to recover as many missing messages as possible, as
quickly as possible. But we also want low cost: this recov-
ery should use as little of the network bandwidth as pos-
sible. We present a centralized algorithm to generate re-
pair graphs. We demonstrate through simulation that these
graphs achieve a level of reliability that is almost as high as
that achieved by repair graphs specifically designed for high
reliability. At the sametime, our graphs maintain a cost that
is almost as low as the cost in repair graphs designed for
low cost.

1 Introduction

The Internet’s flexible design enables it to transmit a variety
of types of traffic. Traffic can be as simple as a point-to-
point data communication, or as complex as a large-scale,
multimedia collaboration that simultaneously transmits in-
formation between numerous hosts. The deployment of IP
Multicast [1] significantly reduces the load imposed on the
Internet by large-scale, multi-host communications. How-
ever, IP Multicast is best-effort: a packet transmitted via IP
Multicast need not reach all intended receivers. Hence, on

Nicholas F. Maxemchuk
AT&T Labs - Research AT&T Labs - Research
Florham Park, N.J.
nfm@research.att.com

David Shur

Middletown, N.J.
shur@research.att.com

its own, IP Multicast is unsuitable for sessions that require
low packet loss rates.

Multimedia broadcast sessions, such as live or pre-record-
ed broadcast radio / TV, are applications that, via IP Mul-
ticast, can be made widely available to consumers at a low
cost. However, peoples’ interest in tuning in to such sessions
decreases with the quality if the reception. Since packet loss
degrades reception quality, it is necessary to add some addi-
tional mechanism on top of the best-effort IP Multicast ser-
vice to keep loss rates at low levels.

Here, we present a system that improves reception qual-
ity by recovering from packet losses in streams transmitted
via IP Multicast. The system utilizes a few dozen servers in-
side the network as repair servers. Each server caches pack-
ets from the original transmission, and can forward (via uni-
cast) packets to other repair servers that did not receive the
packets via the original transmission. After a fixed delay on
the order of several seconds, a repair server then multicasts
the packets in scoped sub-regions of the network, providing
receivers within the scoped region with a transmission that
is delayed by a few seconds relative to the original multicast
session. However, this delayed transmission contains fewer
losses, and thus presents a higher quality copy of the origi-
nal transmission than what the receiver would have obtained
had it joined the original transmission group.

We focus on producing a recovery system that can eas-
ily be deployed by a network service provider or by a set
of cooperating network service providers. The system has
several unique features. First, it is built to support existing
and future applications that are designed to interact with the
current best-effort IP multicast model. Our system does not
require that these applications possess any additional func-
tionality to handle late packet arrivals or to request repairs.
Second, the system is fault tolerant: it uses a simple algo-
rithm to route repair transmissions around any repair server
that ceases to operate, and reconfigures itself to avoid subse-
quent failures. Last, the system’s configuration information
is maintained at a central point of control, simplifying sys-
tem operation, monitoring, and on-line debugging.

There has been a significant amount of prior work that
uses repair servers in a similar manner [2, 3, 4, 5, 6]. What

separates our work from prior art is our focus on keeping the
architecture simple where it doesn’t need to be complicated.
This simplicity of the architecture is captured in terms of
three basic design principles:

1. Decisions are centralized, as long as the centraliza-
tion does not compromise the scalability of the sys-
tem, and as long as the system can operate correctly
and remain productive for an extended time if sepa-
rated from the centralized decision point. In particu-
lar, we use a centralized algorithm to determine from
which repair servers a given repair server should re-
quest repairs. Other works use distributed algorithms
that use various probing techniques to identify appro-
priate repair servers [2, 3, 5, 6, 7], which complicates
their deployment.

2. The complexity of the protocol at the repair servers
is kept simple, and the amount of state that a repair
server must maintain is kept low.

3. The system utilizes a simple model of the underly-
ing network. A system designed to utilize a complex
network model tends to be quite complex itself, and
makes it difficult to assess its performance, or debug
problems that may arise.

This simplification increases the likelihood of a success-
ful deployment, and also simplifies the task of monitoring
and debugging.

This paper specifically focuses on the protocol that is
utilized by the repair system to repair packet losses at the
repair servers, allowing them to deliver high quality mul-
timedia multicast sessions to receivers. Our protocol pro-
vides high reliability: a high likelihood that a repair server
can deliver a packet to a receiver within the receiver applica-
tion’s deadline. This is accomplished using a small amount
of additional bandwidth on network links, keeping the oper-
ating cost low (in terms of link usage). In the protocol, re-
pair servers obtain missing packets from other repair servers.
What affects the reliability and cost of the protocol is the
choice of repair graph: a graph whose nodes are the repair
servers, and whose edges indicate the directions in which re-
pairs flow between repair servers. We demonstrate how a
variant on the minimum spanning tree algorithm generates
repair graphs that can achieve high reliability at a low cost.
The only knowledge of the underlying network needed by
these algorithms is the Euclidean distance between all pairs
of repair servers, and between each repair server and the
originating multicast source. We demonstrate through sim-
ulation that, given the limited knowledge we have about the
underlying network, the repair graph generated by the algo-
rithm achieves a level of reliability that is almost as high as
that achieved by repair graphs specifically designed for high
reliability (repair servers request repairs from servers that lie
near the transmitting source). At the same time, it maintains

a cost that is almost as low as the cost maintained by the re-
pair graphs designed to maintain a low cost (repair servers
request repairs from nearby servers).

The paper proceeds as follows. In Section 2, we intro-
duce the network model: our abstract view of the network
and of the capabilities of the repair servers for which we
wish to provide repair service. Section 3 presents the al-
gorithms we use to generate the repair tree, and motivates
why we believe these algorithms produce the kinds of repair
graphs that would be most effective at providing high relia-
bility at a low cost. Section 4 presents performance results
of simulations of our repair graph algorithm on the network
model. We discuss related work in Section 5, and last we
discuss future directions and conclude in Section 6.

2 Network Modédl

In this section, we present our abstract model of the network
on top of which we will be building a repair graph. We be-
gin by describing the application model that we support, and
then describe our abstraction of the Internet topology that we
believe is a reasonable basis on which we should design our
repair graph algorithm.

2.1 Application Model

Our repair graph algorithm is designed to connect repair ser-
vers that support multimedia broadcast applications, where
the applications are designed to run on top of best-effort IP
multicast. As a result, the repair server cannot rely on the
application to actively participate in the repair service proto-
col (e.g., repair requests, playout buffering). Our model of
the interface between repair server and application is based
on the model presented in [8], which we now summarize.

Figure 1: The Non-modified Application Repair Server Ar-
chitecture

Figure 1 depicts how multicast groups are used by the
repair system to improve reception quality at receivers. The

transmission source, represented by an *X’, transmits its sig-
nal on a multicast group, Go. Transmissions from the source
onto G have a large scope (e.g., a ttl of 127), and can be
received in the lightly-shaded region. Some of the data gen-
erated by the source is lost within the network as it propa-
gates to receivers (black dots) or repair servers (square white
boxes) joined to multicast group G¢. Hence, receivers that
jointo G will often receive a poor quality signal due to sub-
stantial packet losses.

Each repair server, s;, joins to group Gy, and delays its
transmission of the received data by some fixed amount of
time, t;, beyond its scheduled playback time. During this
period of time, it detects packet losses in its received stream
on group G, and attempts to recover these lost packets from
neighboring repair servers via unicast requests. The recovery
attempt consists of a series of one or more unicast requests
to nearby repair servers, which unicast back the requested
packet if it is available. When a time of ¢; has elapsed be-
yond the playback time of a received or recovered packet, the
packet is transmitted by the repair server, s;, on a separate
multicast group, G;. Transmissions to G; by s; are scoped
to within a local region (e.g., ttl of 0,1 or slightly larger). In
Figure 1, we indicate the smaller scoping of the group G ; by
a darker shaded region which surrounds the repair server.

Rather than join group Gy, a receiver that lies within
the transmission range of some repair server, s;, can join
to group G; and receive a delayed, but much higher quality
transmission. This is because a receiver near a repair server
s; that is joined to group G; receives almost all the packets
that were received or recovered by s;. If the repair graph is
configured in a reasonable manner, then it is highly likely
that a repair server s; will be able to recover a packet as long
as some repair server upstream on the graph receives the
packet in the original transmission.! The repair will prop-
agate downstream due to the chain of unicast requests and
retransmissions of the lost packet along each hop of the re-
pair graph. Thus, the likelihood is high that a receiver will
receive a packet on G; that it would have lost on Gg.

Note that because the source and receiver do not partici-
pate in the recovery process, applications that have been and
are being developed to use the standard IP multicast UDP-
like interface can utilize the protocol by simply joining a re-
pair multicast group instead of joining the original multicast
group. Further details can be found in [8].

Repair servers do not maintain state about who has re-
quested a repair. If a repair server, s;, receives a request
for a packet from a repair server, s;, and it cannot provide
the packet, s; makes no response, and keeps no information
regarding the request. Hence, it is s;’s responsibility to re-
query s; at some future point in time if it still desires to re-
ceive the packet from s;. If each repair server were to main-
tain state about queries, it would be possible to propagate a
repair through a chain of servers that lost the initial trans-
mission in much less time. However, maintaining such state

LA node A is upstream from another node B if there is a directed path
from Ato B.

increases the complexity of the repair server code (which re-
quires a re-request mechanism in any event because requests
themselves might be lost), and is not necessary for the range
of applications that we wish to support with our protocol.

In our system, the organization of the repair graph is
formulated from a centralized process, which then contacts
each repair server to inform it of its connection information.
This centralized process assigns a set of parents to each re-
pair server from which the server may request packet repairs.
One can construct the repair graph from this information
by drawing edges from each repair server to its set of par-
ents. The centralized process can contact servers on occa-
sions when the repair graph needs to be updated (e.g., a re-
pair server in the system fails). However, we expect such up-
dates to be infrequent. We have already built a repair system
that operates in this manner that locates and routes around
faults in the network. Furthermore, repair servers whose ser-
vices are not needed (no receivers are joined to the repair
session, and no repair servers are requesting repairs) can en-
ter a sleeping mode that conserves resources at the host run-
ning the repair server process, as well as in the neighboring
network region. The description of these attributes of the
system is discussed in [9].

2.2 Abstraction of the Underlying Multicast
Networ k

We evaluate our system through simulation over an abstract
model of the multicast network. Our abstraction of the un-
derlying multicast network attempts to capture several real-
istic features of Internet multicast routing, and at the same
time, avoid unnecessary details that we expect will not sig-
nificantly affect protocol performance. Since we compare
the performance of repair graphs whose nodes consist of the
transmission source and repair servers, our underlying net-
work graph in the model only contains nodes that can po-
tentially serve as repair servers. We do this rather than in-
troduce additional complexity in the model by including in-
termediate nodes that connect repair servers. We expect that
removing these additional nodes does not significantly alter
our results. Our model also does not include the last hop
to the receivers that connect to the repair servers. Because
one of our requirements is that application-level code cannot
be modified to request or detect repair packets, there is little
that can be done to improve the communication performance
between a receiver and its “nearest repair server”. \We leave
it to the receiving application (or user of the application) to
its “nearest repair server”, i.e., to choose a group on which
it obtains the best service it can, given the limitations on the
number of repair servers that can be deployed.

2.2.1 Underlying topology

We now discuss our construction of the underlying network
topology. Network nodes, each of which represents a poten-
tial source or repair server, are placed on a two-dimensional

grid in which only a fixed subset of grid squares can contain
nodes. The grid squares which contain nodes represent pop-
ulated areas, such as cities, or, if one prefers a larger scale,
continents. The grid squares that do not contain nodes rep-
resent unpopulated regions or oceans. We use a scaled down
version of what is used in [10] to generate our graphs. In
[10], up to 10,000 receivers are used per sample. Here, we
are only interested in the placement of repair servers, and
expect on the order of 50 nodes to be sufficient for pro-
viding a global repair service: an intelligent placement of
these servers throughout the network will improve the trans-
mission quality for a large majority of receivers within the
network. We randomly select 5 grid squares from a 5x5
square grid to be populated regions. The remaining squares
are oceans (devoid of nodes). We refer to each square that
contains nodes as a continent.

After placing the nodes within the network on the conti-
nents, we randomly assign bi-directional links to connect the
nodes, where the probability of constructing a given link is a
function that decreases with the distance between the nodes
it is to connect. Thus, nodes that are close together are more
likely to be directly connected (it follows that the density of
connectivity is higher within a continent than across conti-
nents). The algorithm to generate links does not terminate
until a path exists between all pairs of nodes.

2.2.2 Building the multicast tree

Once we have generated the underlying network topology,
we choose one node to be the source of the multicast group,
and 20 of the remaining 49 unused nodes to be repair servers
that will participate in the session. The multicast tree is
the shortest-path tree from the source to each of the repair
servers, where a path can proceed through any node within
the underlying graph (whether or not the node has been se-
lected as a repair server). We could perhaps build trees that
are more realistic by increasing the aggregate number of
nodes in the graph beyond 50. Doing so would likely in-
crease the expected hop-count between repair servers. How-
ever, we expect that ISPs will choose repair servers in a
strategic manner, and the shortest path between two nearby
repair servers is likely to closely approximate the Euclidean
distance between them.

2.2.3 Lossand recovery

We represent packet loss on the multicast tree as a Bernoulli
process on each link of the tree. A repair server fails to re-
ceive a packet whenever any link upstream from it (toward
the source) drops a packet. This process captures spatial, but
not temporal, loss correlation observed for multicast trans-
mission. In this paper, we will examine the system’s ability
to recover a single packet that is lost in parts of the network.
For this reason, the fact that we do not capture the temporal
loss correlations between successive transmissions is irrele-
vant.

For the purposes of building the repair graph, we per-
mit each repair server to connect directly to any other repair
server (i.e., the graph in which the 20 repair servers are the
nodes and the edges represent paths for direct communica-
tion is a 20-clique). Again we make the assumption that the
distance along the communication path between two repair
servers closely approximates the Euclidean distance. Con-
structing the graph as such also implies that it is quite possi-
ble for two servers to have a more direct mode for communi-
cation than the path that connects them within the multicast
tree.

We are interested in testing the performance of our sys-
tem under two types of losses on top of the repair graph.
First, we assume that the combined request and repair trans-
missions between two repair servers failing to deliver the re-
pair from the requestee to the requester is a Bernoulli loss
process. Second, we assume that it is possible that a small
number of repair servers (0, 1, or 2) may fail during the ses-
sion. These servers do not respond at all to requests for re-
pairs.

2.2.4 Repair server algorithm

A repair server that detects a missing packet requests a re-
pair immediately, and continues to do so periodically until
the packet is received, or the packet’s deadline for playout
on the locally scoped multicast group expires. In the cur-
rent implementation, the period of the request is a second.
Since all repair servers are likely to detect a packet loss at
approximately the same time (relative to a second), the ith
request from all servers that have not received the packet
occur at approximately the same time, and hence it makes
sense to model the request process as a series of rounds. In
each round, a repair server that has not yet recovered the
packet makes a request to a parent for the packet. Because
repair servers do not maintain state for packet requests, a
repair propagates at most one hop on the repair graph per
round toward a repair server that needs the packet.

3 A Repair-Graph Building Algorithm

We now describe the algorithm we use to generate repair
graphs. Let us quickly review the traits of a “good” repair
graph. We define the reliability of a repair graph more for-
mally as the expected number of packets, averaged over all
repair servers, that can be recovered before the deadline. We
want a repair graph that exhibits a high reliability, close to
1. At the same time, we want to limit our usage of network
resources. Here we assume that the cost of a transmission be-
tween repair servers equals the Euclidean distance between
those servers. This is not an unreasonable assumption. At
present, leased-line providers charge by the mile.

We also impose several additional requirements based on
observations of trials of our prototype implementation [9].
The algorithm should be robust in environments where there

are losses of repair packet transmissions, as well as over
single node failures. Robustness over multiple node fail-
ures is of course preferred. However, it is unlikely that two
nodes’ times of failure will overlap.? Last, we assume that
the only information that is available to the algorithm is the
geographical location of the source and of the repair servers
in the network: this information allows us to compute the
Euclidean distance between pairs of repair servers and be-
tween the source and any repair server. Thus, we will not
need to obtain accurate routing information, nor do we re-
quire initial estimates of the loss rates between various pairs
of repair servers.

3.1 Toward aRobust Repair Graph

Before embarking on a description of our repair-graph build-
ing algorithm, we first describe at a higher level what moti-
vated us to construct the algorithm the way we did.

311 Aringatthetop

If the data source for a session participates in the repair pro-
tocol, then ensuring that a repair server eventually receives
a copy of a lost packet (barring a node failure, a flushing
of the source’s cache, or a deadline expiring) is simply a
matter of rooting the repair graph at the source (making the
source upstream from all repair servers). However, our as-
sumption that the application code cannot be modified does
not allow us to include the data source in the repair graph.
This means that it is conceivable that in some instances, the
original transmission of a packet is lost by all repair servers,
and is therefore unrecoverable. While we cannot hope to
recover from such occurrences, we can try to construct a re-
pair graph that gives a high likelihood of recovery in a small
number of rounds in most loss scenarios by ensuring that a
few hops upstream, there is a repair server that has a high
likelihood of receiving the packet.

One method for locating such a repair server would be to
observe the traffic for some period of time, and then perform
a correlation study for each repair server to determine which
server would best suit its needs for repair. However, such
a process complicates the protocol, and with traffic patterns
changing over time in the network, it is not clear that such a
solution would be effective. Instead, we make the following
observation: nodes with a smaller Euclidean distance to the
source are more likely to lie upstream (nearer to the source)
on the underlying multicast tree, and it follows that in most
cases, it is more likely that these servers will receive the orig-
inal data transmission, and subsequently be able to provide
repairs.

Our solution is to identify a small set of repair servers
that are near the source, such that it is most likely that if any

2The central point of control maintains periodic contact with each server
at a rate such that the system is capable of detecting node failures in under a
minute [9], and in this same period of time it should be possible to restruc-
ture the repair graph to avoid the failed node.

repair server receives a packet, then the packet was received
by some repair server in this small set. We then connect
the servers in the small set in the form of a ring so that if
any of them receive the packet, then all of them should re-
ceive the packet as the packet propagates around the ring.
The remaining repair servers are connected to the ring from
downstream, so that any packet that is received by some re-
pair server within the ring can subsequently be obtained by
any repair servers downstream.

We note that if it is possible to co-locate a repair server at
the location of the data source, then the process of locating a
ring of repair servers that surround the source can be omitted.
For the remainder of the paper, we assume that the source is
located at a point that does not permit the co-location of a
repair server, necessitating the construction of the ring.

3.1.2 TwoTrees

A “good” repair graph efficiently distributes repairs from
servers that are more likely to receive data in the initial trans-
mission to those servers that are less likely to receive the
data. Most often, a tree is constructed for this purpose [3, 4,
5, 7], since it is the most efficient means of producing a fully
connected graph (a path exists from the root of the tree to
each node). However, a node failure, unless lying at a leaf of
the tree, would partition the tree and prevent propagation of
repairs from nodes on one side of the partition to the other.
To overcome this drawback, we need to construct a repair
graph that has the efficiency close to that of a tree, but also
has the ability to route around such node failures.

3.2 Our solution

At a high level, our solution is the following:

o Selectthe 3 nodes that are likely to surround the source
and construct a ring from these nodes with edges that
is bi-directional (directed edges are chosen going both
in the clockwise and counter-clockwise direction).

e Treating the three nodes in the ring as a single node,
construct a primary tree with high reliability and low
cost from the remaining nodes, rooted at the node that
represents the ring.

e Remove the (directed) edges used in the primary tree,
and generate a secondary tree rooted at the ring on the
remaining edges. We would like to construct this sec-
ondary tree such that the graph built by concatenating
the ring and two trees together results in a graph that
can route around any single node failure.

e During each round, a repair server that has not yet re-
ceived a copy of the packet chooses an edge on the
graph generated by the concatenation of the ring and
the two trees, and requests the repair from the node at
the other end of the edge.

N

(a) Minimum Spanning Tree

(b) Shortest Path Tree

(c) A “good” tree

Figure 2: Various Trees built on top of a 6-clique, where the white node is the root.

We now describe the algorithm to construct the trees.
We postpone our discussion of how we choose the three
nodes from which we build the ring. For the time-being, the
reader should assume that the three node ring has already
been formed. The resulting tree that is constructed by the
following algorithm extends from the ring, i.e., the ring can
be thought of as a super-node that roots the tree.

The algorithm that constructs the primary tree is a modi-
fication of an algorithm that generates a minimum-spanning
tree (MST). An MST is the tree with the lowest link cost.
However, there are some nodes in an MST whose path from
the root contain many hops. In our model, since packets are
dropped on each hop with equal probability, and since packet
repairs traverse a single hop in each round for a fixed number
of rounds, the level of reliability decreases at a repair server
as the number of hops to repair servers increases. To in-
crease reliability, the number of hops from the ring to repair
servers must be decreased. The tree with the fewest number
of hops to each repair server is a shortest path tree rooted at
the ring (where a path’s length is the number of hops con-
tained within the path). Since edges are permitted between
any pair of repair servers, the shortest path tree connects each
repair server directly to a repair server that lies within the
ring. This introduces several long, high-cost edges into the
repair graph. Ideally, we want to build a tree where long
links in a repair graph are shared by several repair servers
that are near to one another. For instance, looking at this
in terms of a network spread out over several continents, it
makes sense to form trees where only a single link connects
repair servers across continents, but the path from a repair
server to this cross-continental link has a small number of
hops.

Figure 2 shows the difference between a minimum span-
ning tree, a shortest path tree, and a tree we consider ideal.
In all three graphs, the node locations are identical, only the
edges used to connect the nodes change. In the minimum
spanning tree (Figure 2(a)), there is a node that is 5 hops
from the source (white node). In the shortest path tree (Fig-
ure 2(b)), all nodes are one hop from the source, but most
are connected using long-length edges. In the “good” tree
(Figure 2(c)), most edges are of short length, and nodes are
at most two hops from the source.

3.21 Construction of theprimary tree

The algorithm to construct the primary tree adds one node at
a time, and relies on two measures of distance within the tree
and network. We write ¢(n,m) for the Euclidean distance
from a node n to a node m, and measure the network cost
for sending a repair over link (n, m) as being proportional to
¢(n,m). We define hy(n) to be to be the minimum number
of hops it takes along in the primary tree to travel from a
node in the ring at the root of the tree to node n. Note that
hi(n) is only defined for a node n after the node has been
added to the tree.

1. Let N be the set of nodes without a path on the tree to
the ring.

2. Let M be the set of nodes with a path on the tree to
the ring.

3. While N is non-empty

Selectn € N and m € M such that c(n,m) +
ahi(m) < c(n',m’) + ahy(m') for all other n' €
N,m' € M.

Add directed edge (n, m) to the graph.

o

6. end while

Figure 3: An iteration of the algorithm to build Tree 1

Figure 3 presents the main iteration within the body of
the algorithm used to generate the primary tree. The three
nodes that form the ring near the source are connected and
placed in the set, M, of nodes which have a path on the tree
to a node within the ring. NV is initially the set of the remain-
ing nodes. Each time the iteration of the body is performed,
a node is moved from M to N. When M is empty, all nodes
are attached to the tree and the algorithm is complete. The
value chosen for the parameter, «, affects the shape of the
primary tree. If « is zero, then the algorithm generates an
MST: the link with lowest cost that connects to the tree and
does not form any cycles is always added on a given itera-
tion. As « is increased, more emphasis is placed on mini-
mizing the number of hops from the ring to a repair server.
As « tends toward infinity, the resulting tree converges to-
ward the shortest path tree (where path length is the number
of hops in the path).

We now describe the construction of the ring that forms

the root of the repair tree. The objective is to try and “sur-
round” the paths on the multicast tree from the source with-
out underlying knowledge of the multicast tree. We want to
keep small the number of nodes that we place within the ring
to minimize the maximum hop-count to propagate a repair
to all repair servers in the ring. To accomplish these tasks,
we run the algorithm to build the primary tree, rooted at the
source, and then perform a breadth-first search on the result-
ing tree. When two nodes have the same path length from
the source, we give precedence to the node with the smaller
aggregate edge cost. The first three nodes we come across
are the nodes that form the ring. In the ring that roots the
primary tree, directed edges are chosen such that the third
node obtained in the breadth first search recovers from the
second node, which recovers from the first, which recovers
from the third. After this ring is formed, the algorithm to
generate the primary tree is rerun, with M initially set to the
three nodes that form the ring. This result is a set of trees,
which, when joined to the set of edges in the ring in one
direction, is a single tree plus one additional edge.

3.2.2 Construction of the secondary tree

For the secondary tree, the ring at the root of the tree con-
tains the same set of nodes as the ring that roots the primary
tree, but the edge directions are reversed (i.e., the first node
added to the ring recovers from the second, which recovers
from the third, which recovers from the first). All directed
edges used within the primary tree are removed from the un-
derlying graph so that the secondary tree and primary tree
share no common, directed edges. Note, however, that if di-
rected edge (m, n) is in the primary tree, we permit the edge
(n,m) in the secondary tree.

The main purpose of the secondary tree is to ensure that
the graph built from the concatenation of the two trees can
route around any node failure. We accomplish this by re-
stricting the set of edges that can be used in the secondary
tree to those that satisfy certain depth requirements. We de-
fine ho(n) in a manner similar to the definition of k1 (n): a
value is assigned to ha(n) once node n has been added to
the secondary tree, where hy(n) equals the minimum num-
ber of hops it takes along in the secondary tree to travel from
a node in the ring at the root of the tree to node n.

Figure 4 presents the main iteration within the body of
the algorithm used to generate the secondary tree. Note that
this algorithm is similar to the algorithm used to build the
primary tree: a node is added to the tree when, compared
to the other nodes that can be added, it minimizes a com-
bination of link cost and hop count. As in the algorithm
that builds the primary tree, the relative weights of the link
cost and hop count depend on the choice of a. This algo-
rithm imposes an additional requirement on the node being
added: a node, n, can attach downstream from a node m
only if hy1(n) > hy(m) within the primary tree. This ad-
ditional property guarantees that the graph formed from the
edges from both trees can route around any single node fail-

1. Let N be the set of nodes without a path on the tree to
the ring.

2. Let M be the set of nodes with a path on the tree to
the ring.
3. While N is non-empty
. Selectn € N and m € M where hy(n) > hi(m)
such that ¢(n, m) + aha(m) < c(n',m') + aha(m’
for all other n' € N,m' € M where hi(n') >
hi(m').
Add directed edge (n, m) to the graph.

o

6. end while

Figure 4: An iteration of the algorithm to build Tree 2

ure. This is proven formally in [11]. The proofs are omitted
here due to space restrictions.

We conclude this section by noting each node in the ring
has two parents (the other two nodes in the ring). Each node
that is not in the ring also has two parents: a node in each
tree, or, for each time its parent is the ring (represented as a
super-node), it has a distinct node in the ring as a parent. It
follows that if each repair server requests repairs from both
of its parents, any repair that was received by a node within
the ring will eventually reach all other nodes.

4 Evaluation

In this section, we evaluate the performance of our algorithm
via simulation. Our evaluation proceeds in three steps. First,
we determine an appropriate value for the tunable parameter,
«, that achieves a low cost while maintaining a high likeli-
hood of packet recovery (i.e., reliability) for all receivers.
We will see that using a value of o = 1 within the algorithm
results in trees that use long, higher cost links infrequently
(keeping cost low), and have a low hop-count for most re-
pair servers to recover the packet (keeping reliability high).
Next, we consider the impact of building the repair graph as
the concatenation of two trees rather than building it as just a
single tree. We find that utilizing the links on the secondary
tree causes a small increase in cost and a small reduction in
reliability in the case where there are no node failures, but
that when node failures occur, requesting repairs from the
secondary tree can increase reliability significantly. Last, we
examine the impact on reliability and cost as we vary the
loss rate on both the multicast tree and on the recovery tree.
We find that the loss rate on the multicast tree reduces reli-
ability of the repair graph, but this reduction applies to any
generated repair graph. Hence, the repair graph generated
with a = 1 in which both repair trees are utilized in the re-
pair process remains the preferred option. We find that loss
on the repair graph has much less of an impact on both cost
and reliability than having this loss on the original multicast

distribution tree.

We run simulations as follows: A simulation configu-
ration consists of a choice for «, a fixed loss rate on links
of the multicast tree, a fixed loss rate on links of the repair
tree, a fixed number (0, 1 or 2) of nodes that fail (are un-
able to forward repairs), and a round schedule that indicates
per round from which tree (primary or secondary) a repair
server selects its parent to issue its repair request. For each
configuration, we perform 500 runs. Each run consists of
the following steps: First, we randomly generate a network,
and randomly choose 21 out of the 50 nodes to be possible
repair servers and multicast source. We then choose 10 dif-
ferent nodes at random to be the multicast source. For each
choice of multicast source, we generate a multicast tree and
repair graph (where the remaining 20 nodes chosen are re-
pair servers). In the case where we have either one or two
node failures, we iterate over all possible combinations of
nodes failing, considering each combination once. We then
transmit 10 packets, record how many repair servers were
able to recover the packet by the end of each round, and what
the cumulative cost of transmissions was at the end of each
round. We average over all results, giving equal weight to
each packet transmission in each run, to obtain the reliabil-
ity and average cost.

Figure 5 demonstrates how varying « impacts the relia-
bility and cost of a repair session. Here, there is no loss of
transmissions between repair servers, and there are no node
failures. The loss rate on each link during the original mul-
ticast transmission of the packet is .03. Each repair server
issues a request along the primary tree during the first four
rounds, and switches to the secondary tree during the last
four rounds, and gives up trying to obtain a packet after eight
rounds. On the z-axis of both Figures 5(a) and 5(b), we vary
the number of rounds. The y-axis of Figure 5(a) indicates
the average level of reliability, and the y-axis of Figure 5(b)
indicates the average cost. Points plotted at z = 0 in Fig-
ure 5(a) indicate levels of reliability of the original multicast
session (without any repairs). The various curves plot relia-
bility and cost as a function of round for different values of
.

We see that by increasing «, we can increase the relia-
bility of the repair graph. This is because a high value of «
increases the weight of the hop-count component within the
metric that the tree generating algorithm tries to minimize.
As a result, the length of the path from a node in the ring at
the root of the graph to the repair server is decreased. Thisin
turn decreases both spatial correlation of loss and the max-
imum number of hops that a repair needs to travel in worst
case scenarios. However, cost increases, since repair servers
are less likely to choose parents that are nearby neighbors,
and more likely to choose parents that are near to the source.
A value of @« = 10 is most often a star, with each repair
server connecting directly to some node in the ring at the
root. A value of @ = 0 produces a minimum spanning tree
(if we consider the ring at the root as a single node before
applying the MST algorithm).

0.99 r

0.98

0.97 r

0.96

Reliability

0.95

0.94 | i

; ALPHA=0 —+—
0.93 ALPHA=L -3]

4 ALPHA=10 -
0.92 ‘ ‘ ‘ ‘ ‘ ‘ ‘
o 1 2 3 4 5 6 7 8
Rounds
(a) Reliability
7000 e
6000 | x
5000
.. 4000 -
%]
3
3000 | |
2000 | |
1000 ALPHA=0 —+— |
ALPHA=1 -3
A ‘ ‘ ‘ ‘ ALPHA=10 -¥-
o 1 2 3 4 5 6 7 8
Rounds
(b) Cost

Figure 5: How changing o changes reliability and cost

We see a significant increase in reliability as we vary o
from 0 to 1, and a significant increase as well when it is
varied from 1 to 10. However, the increase in cost as we
vary a from 0 to 1 is not nearly as significant as it is when it
is varied from 1 to 10. We conclude that it makes the most
sense to choose a value of « close to 1, since this gives a
significantly higher level of reliability than that for « = 0
without a significant increase in cost.

Figure 6 demonstrates how utilizing a second tree can
increase reliability in the event of node failures. Because
our simulations use identical loss rates on all links, one does
not achieve any significant gain in reliability by utilizing a
second graph when there are no node failures. However, us-
ing a single repair tree, a node failure might partition a set
of repair servers that lost a packet from the set of nodes that
might be able to repair the loss. Figure 6(a) demonstrates the
impact that a single node failure has (recall we average over
all possible configurations of the location of the node fail-
ure), and Figure 6(b) demonstrates the impact of two node

Reliability

Rounds

(a) One node failure

Reliability

Rounds

(b) Two node failures

Figure 6: The second tree’s impact on node failures

failures at once. Again we vary the number of rounds on the
x-axis and the reliability on the y-axis. The different curves
represent different orderings of repair graphs used per round.
For instance, the curve labeled “4x(1,2)” means that on odd
rounds, the parent is chosen from the primary tree, and from
the secondary tree on even rounds. We see that switching
to the secondary tree allows a higher level of reliability, and
this is exemplified in the unlikely event that there is more
than a single node failure at any given point in time.

Figure 7 demonstrates the effect of varying the loss rate
on the original multicast tree (labeled p) and on the repair
tree (labeled P). We see that varying the loss rate on the
original multicast tree has a larger impact on both the relia-
bility and cost of the repair server system than similar vari-
ations in loss rate on the repair transmissions. This is not
surprising, since increasing the loss rate on the original mul-
ticast tree increases the expected number of receivers that
need additional repairs. Increasing the loss rate on the repair
tree only affects the reliability of the subset of receivers that

0.95
2 09
=
8 I
T
@ 085 |
08 [/ p:0.03, P:0.0 -t |
{ p:0.1, P:0.0 -~
4 p:0.03, P:0.1 ~-%---
;: p:0.1, P:0.1 &
0.75 ‘ ‘ ‘
0 1 2 3 4 5 6 - 8
Rounds
(a) Reliability
7000 o - -
6000 -
5000 r |
& 4000 |
[«] E’
© 3000 - |

Rounds

(b) Cost

Figure 7: The impact of loss on reliability and cost

did not receive the initial transmission, and therefore this has
a smaller impact on overall reliability.

Last, we find that the conclusions drawn by examination
of Figures 5 and 6 remain the same for the loss rates depicted
in Figure 7. In other words, we find that for reasonable loss
rates, a value of « = 1 and alternating parents between the
two repair trees over the various rounds provides a repair
system that exhibits the most desirable tradeoff between low
cost and high reliability.

5 Related Work

IP multicast [1] is designed as a best-effort service, shifting
the responsibility of providing some sort of reliable deliv-
ery to the protocol layers that lie above the network layer.
Several early works examine reliable multicast in networks
where no explicit knowledge of participant location was nec-
essary [12, 13]. However, the current preferred means to

achieve a reliable multicast that scales to a large number of
receivers is to form some sort of hierarchical structure in the
network. The idea was first developed into a protocol by
Paul et al [3] by building the hierarchy from participating
receivers.

Providing better-than-best-effort service for deadline-
driven traffic, such as audio and video applications, was ex-
amined independently by Maxemchuk et al in [8], Xu et al in
[2], and Lucas et al in [5]. In these works, receivers request
repairs from other receivers. The goal is to repair as many
lost packets before their deadlines as possible, rather than
providing full reliability, as would be necessary for a data-
transfer. Xu’s work was extended in [6] to demonstrate the
performance benefits of including waypoints: servers inside
the network dedicated to improving protocol performance.
In the application presented in that paper, waypoints act as
repair servers, and reduce the repairing load on receivers in
the session.

A variety of works [2, 6, 7, 14, 15] present different
algorithms for generating the repair hierarchy that can be
used to provide reliable multicast. All of these approaches
build their repair graphs dynamically using distributed algo-
rithms. A dynamic algorithm to build the repair graph can
customize the graph precisely to the current networking con-
ditions. The distributed nature allows the algorithm to scale
to a large number of tree participants. However, our results
indicate that a simple, static, centralized algorithm builds a
repair graph that is sufficient for our needs, both in terms of
reliability and scalability.

6 FutureDirectionsand Conclusion

We have proposed and examined a simple, static, centralized
algorithm to build a repair graph to provide resilient multi-
cast support to real-time multicast sessions that can tolerate
small playback delays. The simplicity of the algorithm is due
to the high level of abstraction of our underlying network
model, and because decisions that are made infrequently are
centralized. We start by limiting the set of features in the
network that we model to only those that we believe are im-
portant, and design an algorithm that provides a high level
of reliability while maintaining a low link utilization cost for
this simple model. The simplicity of the algorithm makes
the system easy to deploy, and its static, centralized nature
facilitates understanding and/or debugging of the protocol in
a real Internet environment.

We are currently incorporating our algorithm into our ex-
isting repair service system and will next examine its effec-
tiveness at providing repairs within the actual Internet. It
would also be of interest to compare the level of reliability
and link utilization cost of our approach with the protocols
that build their repair graphs in a distributed, dynamic fash-
ion to see whether the performance gains due to dynamic
adaptation warrant the resulting additional complications in
deployment.

References

[1] S. Deering and D. Cheriton. Multicasting routing in datagram
internetworks and extended LANs. ACM Trans. on Computer
Systems, 8(2):85-110, May 1990.

[2] R.X. Xu, A.C. Meyers, and H. Zhang. Resilient Multicast
Support for Continuous Media Applications. In Proceedings
of NOSSDAV' 97, St. Louis, MO, July 1997.

[3] S. Paul, K.K. Sabnani, J.C. Lin, and S.Bhattacharyya. Re-
liable Multicast Transport Protocol (RMTP). |EEE JSAC,
15(3):407-421, April 1997.

[4] S. Kasera, J. Kurose, and D. Towsley. A Comparison
of Server-Based and Receiver-Based Local Recovery Ap-
proaches for Scalable Reliable Multicast. In Proceedings of
INFOCOM' 98, San Francisco, CA, March 1998.

[5] M.T. Lucas, B.J. Dempsey, and A.C. Weaver. MESH: Dis-
tributed Error Recovery for Multimedia Streams in Wide-
Area Multicast. In Proceedings of IC3N'97, 1997.

[6] K. Sripanidkulchai, A.C. Meyers, and H. Zhang. A Third-
Party Value-Added Network Service Approach to Reliable
Multicast. In Proceedings of ACM SSGMETRICS 99, Atlanta,
GA, May 1999.

[7] B. Levine, D. Lavo, and J.J. Garcia-Luna-Aceves. The
Case for Concurrent Reliable Multicasting Using Shared Ack
Trees. In Proceedings of ACM Multimedia’ 96, Boston, MA,
November 1996.

[8] N.F. Maxmchuk, K. Padmanabhan, and S. Lo. A Cooperative
Packet Recovery Protocol for Multicast Video. In Proceed-
ings of ICNP’ 97, Atlanta, GA, October 1997.

[9] D. Rubenstein, D. Shur, and N.F. Maxemchuk. Repair Server
Activation Implementation. Technical Report in preparation,
December 1999.

[10] N.F. Maxemchuk. Video Distribution on Multicast Net-
works. 1EEE Journal on Selected Areas in Communications,
15(3):357-372, April 1997.

[11] D. Rubenstein, N.F. Maxemchuk, and D. Shur. A Centralized
Approach to Network Repair Service for Multicast Stream-
ing Media. AT& T Technical Memorandum TM HA17200000-
991129-03, September 1999.

[12] D. Towsley, J. Kurose, and S. Pingali. A Comparison
of Sender-Initiated and Receiver-Initiated Reliable Multicast
Protocols. |EEE JSAC, 15(3):398-406, April 1997.

[13] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang.
A Reliable Multicast Framework for Light-Weight Sessions
and Application Level Framing. IEEE/ACM Transactions on
Networking, 5(6):784-803, December 1997.

[14] M. Hofmann and M. Rohrmuller. Impact of Virtual Group
Structure on Multicast Performance. In Proceedings of 4th
COST237 Workshop, Barcelona, Spain, December 1997.

[15] B. N. Levine, S. Paul, and J.J. Garcia-Luna-Aceves. Organiz-
ing multicast receivers deterministically according to packet-
loss correlation. In Proceedings of ACM Multimedia’ 98, Bris-
tol, U.K., September 1998.

